Introduction
Hummingbird E203 is an open source for Risk-V MCU and is designed to support instruction sets with parameter configuration RV32IMAC and RV32EMAC. The original code is hosted in the GitHub, and the download URL is：
https://github.com/SI-RISCV
Currently, the design has been implemented based on Gowin FPGA and is bundled with an Eclipse-based integrated development environment.
1, SoC Reference Design:
To build a minimum Soc system with E203 CPU + ICB bus + UART：
[image:]
Figure 1: The Structure of Hummingbird E203 SoC
(1) E203 CPU: the kernel of Hummingbird E203；
(2) ITCM: A configurable size of instruction memory, currently configured as 16KiB;
(3) DTCM: A configurable size of data memory, currently configured as 16KiB;
(4) ICB BUS: Internal Chip Bus, a hummingbird custom bus structure;
(5) UART: Standard UART interface for communication with the PC;
(6) Clock Unit: the input clock is a 50MHz clock on the development board, providing a 20MHz high-speed clock and a 32768Hz low-speed clock;
(7) Always on domain: It includes watchdog, RTC, PWM, etc.
(8) PLIC: RISC-V standard interrupt control unit;
(9) CLINT: Controller for software interrupts and timer interrupts.
2, Software Reference Design：
It includes a demo C project, which demonstrates the function of communicating with the PC through the UART, with a baud rate of 115200, and shows the operation of the SoC through a Hanoi Tower function. The interface of the PC at runtime is as follows:
[image:]
Figure 2: the running interface of C project demo
The value of specific item in the Fibonacci sequence is calculated by reading the value entered by the user.
3, C Language IDE
A C language integrated development environment built using RISC-V toolchain and eclipse
4, Hummingbird Reference design – development process:
1), Install the RISC-V development environment and create the C project;
2), When synthesizing the RTL design, import the compiled result of the C project into the initial value of the ITCM;
3), Place and route the SoC, and download it to the FPGA development board after completion;
4), Once the download is complete, you can start the SoC and run C project, and press the reset button to restart SoC。
[image:]
Figure 3: The Development Process

C project development
1, Install the IDE
(1) Download the IDE package, which contains the Eclipse package, the Java JDK installation package, the RISC-V toolchain package, the Build tools package, and some software tools.
(2) Extract the package and install the Java JDK first. After the installation is complete, you need to configure the environment variables JAVA_HOME, Path, and CLASSPATH. You can check whether the installation and configuration are successful by entering java –version at the command prompt. If both the installation and configuration are successful, it will display the version information.
(3) Add the path of the Cross Toolchain and Build tools to the environment variable PATH. Here is an example:
The path of the Cross Toolchain: …\GNU MCU Eclipse\RISC-V Embedded GCC\7.2.0-4-20180606-1631\bin
The path of the Build tools: …\GNU MCU Eclipse\Build Tools\2.10-20180103-1919\bin
After the configuration is complete, the installation and configuration of the IDE is completed. Note: If you have already installed and configured the IDE when using PICORV32, you do not need to install and configure again. To avoid confusion, it is recommended that you create different workspaces for different SoCs/MCUs to distinguish them.
[image:]
Figure 4: the development interface of IDE

2, Import C project：
When performing C project development, it is recommended to import the C demo project first, and then continue to develop based on the demo project. In the demo project, toolchain parameters, startup files, connector scripts, etc. have been configured. By using this method, you could avoid errors that may occur during setup.
(1) Right click in the Project Explorer and select the Import option from the drop-down menu.
[image:]
(2) In the pop-up dialog box, select Existing Projects into Workspace, then click Next>
[image:]

(3) Select Select archive file, then click Browse on the right to select the demo project.
[image:]
(4) After importing the project, you can try to execute make clean/make to see if the import is successful.
Right click on the project name in the Project Explorer, select Clean Project to execute make clean, and select Build Project to execute make.
Alternatively, you can select Rename to rename the project.
[image:]

3, Compile Settings:
Right click on the project name in the Project Explorer, select Properties..., and select C/C++ Build->Settings on the left side of the pop-up dialog box to set the compilation parameters.
It should be noted that when modifying the settings of the Target Processor, please modify the parameters in the SoC RTL design, otherwise the compilation results will not work properly in the SoC.
[image:]

4, Import C project compilation results into the ITCM of the SoC:
(1) Set the format of the Output file to Raw binary
[image:]
(2) After compiling the project, a bin file is generated in the Debug folder under the project directory, the file name is the same as the project name, and the extension is bin.
(3) In the Debug folder, a Python script is pre-placed and the runtime environment is Python 3.x. Open the command prompt, go to the Debug path, execute the Python script, and the execution method is：
makehex.py <bin file name>
When finished, a document called ram.hex is generated. This document is used to initialize the smem in the SoC RTL design.
If you don't have a python environment installed on your computer, please install Python 3.x beforehand.
[image:]
(4) In the file picorv32_smem.v in the RTL design, you could modify the code of readmemh to import ram.hex into smem during synthesis.
[image:]

Adapted to GW2A18
A reference demo picosoc_demo_2a18 is provided with a resource usage of approximately 9.5K LUTs. After unzipping, you could open the project in Gowin IDE and use it.
The development board used in the reference design is DK-START-GW2A18 V2.0。
[image:]
The 50MHz crystal on the development board is used to provide the clock input, which is input to the FPGA chip and converted to a 20 MHz clock by the PLL as the system clock of the SoC. The frequency of the clock can be modified according to your actual needs. The C project can automatically test the system clock frequency value and output it at startup.
For reference designs, the physical constraints are as follows:
IO_LOC "clk_in" H11; //50MHz CLK in
IO_LOC "resetn" T2; //RESETN
IO_LOC "gpio_in[16]” A15; //UART RXD, J3-3
IO_LOC "gpio_out[17]" A14; //UART TXD, J3-4
The configuration of the physical constraints can be modified according to actual needs.
[bookmark: _GoBack]According to the operation method described above, the compilation result of the C project is imported into the initial value of the ITCM. After the synthesize, place and route, it can be downloaded to the development board for use. After downloading, the SoC starts automatically and runs the C project program. You may press the resetn button to restart the SoC.

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image1.emf
E203 CPUDTCMITCMICB busAlways on domainUARTPLLPLICCLINTPCDK-START-GW2A18 V2.0

image2.png

image3.emf
RTL DesignC ProjectSynthesizePnRDownload to Board

