

Gowin FFT IP 用户指南

IPUG503-1.4,2022-05-12

版权所有 © 2022 广东高云半导体科技股份有限公司

GO₩IN高云、※、Gowin以及高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明		
2018/07/26	1.0	初始版本。		
2019/03/28	1.1	IP 适用产品更新。		
2019/12/16	1.2	 更新 IP 部分图例; 修正 IP 的最大点数支持; 增加资源信息相关描述。 		
2021/07/02	1.3	● 増加动态配置时,新增 I/O 说明;● 更新 5.3.3 节描述。		
2022/05/12	1.4	IP 配置界面更新,同步更新部分描述。		

i

目录

目	录	i
图	目录	iii
表	目录	iv
1	关于本手册	1
	1.1 手册内容	1
	1.2 相关文档	1
	1.3 术语、缩略语	2
	1.4 技术支持与反馈	2
2	功能简介	3
	2.1 特性	3
	2.2 资源信息	
3	工作原理	
	3.1 整体结构	4
	3.2 静态配置	
	3.2.1 设置点数	5
	3.2.2 FFT 模式	5
	3.2.3 输出序列顺序	
	3.2.4 数据缩小方法	
	3.2.5 数据宽度	
	3.2.6 尾数处理方法	
	3.2.7 乘法器类型	6
	3.2.8 数据和旋转因子存储器类型	
	3.3 动态配置	
	3.3.1 动态配置变换方向	
	3.3.2 动态配置点数	b

	3.3.3 动态配置数据缩小比率	6
	3.4 握手协议	7
	3.4.1 动态参数的配置	7
	3.4.2 启动输入数据	7
	3.4.3 FFT 计算数据	7
	3.4.4 输出数据卸载	7
4	- 信号定义	8
5	i GUI 参数	10
6	;接口时序	11
	6.1 数据协议	11
	6.2 握手协议	12
7	'应用举例	13
	7.1 打开工程	13
	7.2 调用 Gowin FFT IP	14
	7.3 例化 Gowin FFT IP	15
	7.4 生成 bitstream 文件	15

图目录

冬	3-1	Gowin FFT IP 整体结构	5
图	6-1	点数据协议时序图	11
图	6-2	握手协议时序图	12
图	7-1	打开工程	13
冬	7-2	IP Core Generator 界面	14
图	7-3	Gowin FFT IP 界面	14
冬	7-4	例化 Gowin FFT IP	15

表目录

表 1-1 术语、缩略语	2
表 2-1 Gowin FFT IP 默认配置资源占用情况	3
表 4-1 FFT IP 信号定义	8
表 5-1 Gowin FFT 参数	10

IPUG503-1.4 iv

1 关于本手册 1.1 手册内容

1.1 手册内容

Gowin FFT IP 用户指南主要包括功能简介、信号定义、参数介绍、工作原理、GUI 调用等,旨在帮助用户快速了解高云半导体 Gowin FFT IP 的特性及使用方法。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com.cn</u> 可以下载、查看以下相关文档:

- DS100, GW1N 系列 FPGA 产品数据手册
- DS821, GW1NS 系列 FPGA 产品数据手册
- DS117, GW1NR 系列 FPGA 产品数据手册
- DS861, GW1NSR 系列 FPGA 产品数据手册
- DS841, GW1NZ 系列 FPGA 产品数据手册
- DS821, GW1NS 系列 FPGA 产品数据手册
- DS871, GW1NSE 系列安全 FPGA 产品数据手册
- DS881, GW1NSER 系列安全 FPGA 产品数据手册
- DS891, GW1NRF 系列蓝牙 FPGA 产品数据手册
- DS102, GW2A 系列 FPGA 产品数据手册
- DS226, GW2AR 系列 FPGA 产品数据手册
- SUG100, Gowin 云源软件用户指南

IPUG503-1.4 1(15)

1 关于本手册 1.3 术语、缩略语

1.3 术语、缩略语

本手册中出现的相关术语、缩略语及相关释义如表 1-1 所示。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
FPGA Field Programmable Gate Array		现场可编程门阵列
FFT Fast Fourier Transformation		快速傅里叶变换
BSRAM	Block Static Random Access Memory	块状静态随机存储器
REG	Register	寄存器
DSP Digital Signal Processing		数字信号处理

1.4 技术支持与反馈

高云半导体提供全方位的技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com.cn

E-mail: support@gowinsemi.com

Tel: +86 755 8262 039

IPUG503-1.4 2(15)

2 功能简介 2.1 特性

2功能简介

Gowin FFT IP 提供一种低资源实现架构。其参数配置灵活,可支持正反向变换、8-16384 点数、可选 DSP 加速、顺序/倒序输出、缩放等以满足用户需求。

2.1 特性

- 数据位宽支持 8-36 bits;
- 旋转因子位宽支持 8-36 bits;
- 点数支持 8-16384 点;
- 正反向 FFT 变换;
- 可选的基 2 阶后数字缩小方案,包括每阶右移指定位数(RS111)、通过端口动态配置、不移位;
- 支持顺序输出、倒序输出。

2.2 资源信息

通过 Verilog 语言实现 Gowin FFT IP, 其资源占用因模式配置存在较大差异; 具体资源占用以实际配置 IP 生成后的数据为准。以默认配置(1024点)为例,资源使用如表 2-1 所示。

注!

BSRAM 资源随配置不同,差异较大。

表 2-1 Gowin FFT IP 默认配置资源占用情况

器件系列	速度等级	IP	LOGICS	REGS	BSRAMS	DSP
CM24 FF	C0/17	1	050	210	DP: 4	MULTADDALU18X18: 2
GW2A-55	C6/17	FFT	656		rROM: 2	WOLTADDALO 16X 16: 2

IPUG503-1.4 3(15)

3.1 整体结构

3工作原理

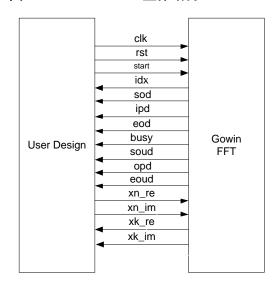
3.1 整体结构

Gowin FFT IP 基本结构如图 5-1 所示。FFT 是离散傅里叶变换(DFT)的快速算法。DFT 由下式给出:

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$

这里 W_N 由下式确定

$$W_N=e^{-j\frac{2\pi}{N}}$$


傅里叶反变换则由下式给出

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk}$$

因 W_N 具有很强的周期性,通过一定的数学变换可以得到 DFT 的快速运算形式 FFT,即所谓基 2、基 4 等快速傅里叶算法。

IPUG503-1.4 4(15)

3工作原理 3.2 静态配置

图 3-1 Gowin FFT IP 整体结构

3.2 静态配置

3.2.1 设置点数

FFT 点数可以通过 GUI 配置为定点的,也可以配置为运行时通过端口输入的。实际应用的时候,如果能确定 FFT 点数,则尽量将 FFT 点数的模式配置为定点的,因为动态端口输入会消耗额外的逻辑资源。动态模式下,FFT IP 占用的资源将和最大点数下占用的资源一样多。所以在设置最大点数时候应事先精确计算。目前仅支持固定点数配置模式。

3.2.2 FFT 模式

FFT IP 支持正向,反向,运行时通过端口信号决定的变换。动态模式下将占用更多逻辑资源,时序性能也可能会更差。

3.2.3 输出序列顺序

输出序列顺序均可选为自然顺序输出或倒序输出。

3.2.4 数据缩小方法

FFT IP 支持每个基 2 阶后右移 1bit、端口动态决定以及不进行移位的几种方案,低资源结构还支持数据块浮点模式。

3.2.5 数据宽度

FFT 变换器内部运算支持的位宽为 8-36bits,旋转因子宽度支持 8-36bits,当不进行数据缩小时,还可选择内部小数位宽,小数位宽支持 0-6bits。变换器支持任意设定输入位宽和小数位宽,只要二者之和落在在

IPUG503-1.4 5(15)

3工作原理 3.3 动态配置

8-36bits 之内即可。输出位宽由系统自动决定,通常输出位宽不小于输入位 宽和小数位宽之和。

3.2.6 尾数处理方法

FFT IP 支持两种尾数处理方法,一种是截断法,另一种是取整法。截断法更节约芯片资源,取整法得到的结果将更精确。

3.2.7 乘法器类型

FFT IP 支持采用 DSP 加速的电路结构也支持逻辑器件构成的乘法器电路,也可以让综合器在综合时候动态决定。动态决定器件类型可能会造成综合时间过长,综合结果不理想等现象。

3.2.8 数据和旋转因子存储器类型

由于 FFT 算法是对大量数据进行在线处理,不可避免需要大量的存储器,IP 设计支持 BLOCK RAM 存储器,分布式存储器,Logic、REG & LUT构成的存储器,或者是让综合器在综合时动态决定。动态决定器件类型可行会造成综合时间过长,综合结果不理想等现象。

3.3 动态配置

只有静态配置启用了动态配置功能,生成的 FFT IP 才具有动态配置功能。所有动态配置项的运行时参数必须在 FFT 变换启动之前并且按照指定的信号在合适的时候完成设置。动态配置是通过端口信号完成的。

3.3.1 动态配置变换方向

该功能在启用了 FFT MODE 里的 Dynamic Through Port 后起作用。当可以进行 FFT MODE 设置时候,iset 将变为高电平,在接下来的时钟边沿将采集 ifft 上的数据,低电平表示进行正向变换,高电平表示进行反向变换。

3.3.2 动态配置点数

该功能在启用了 Variable Points 时起作用。当可以进行 FFT 点数设置时候 pset 将变为高电平,在接下来的时钟边沿将采集 point 上的数据。points 是一个无符号整数,其值为 Log2N,且 N 必须为 Minimum Points 与 Maximum Points 之间 2 的整次幂。目前不支持该配置项。

3.3.3 动态配置数据缩小比率

该功能在数据缩小比率选项选为 Dynamic Through Port 时起作用。当可以进行数据缩小比率设定时,sfset 将变为高电平,在接下来的时钟周期将采样 scal 的设定值。scal 是一个无符号数。sfact 端口功能暂未支持。

IPUG503-1.4 6(15)

3工作原理 3.4 握手协议

3.4 握手协议

协议的总体分为四个步骤,第一步配置动态参数(如果有的话),第二部输入数据,第三步计算数据,第四步读出数据。

3.4.1 动态参数的配置

请参照动态配置一节的说明,按照时序要求进行动态参数配置。需要注意的是,动态参数配置在时域上与其他步骤可能是重叠的。

3.4.2 启动输入数据

一切就绪后,可以通过将 start 置为高电平,来启动一次 FFT 变换。数个周期后,sod 变为高电平,持续一个周期,同时 ipd 将变为高电平,并在整个数据输入阶段始终保持高电平,指示正在输入数据,另外 idx 输出当前时钟采样的序列标号。当一次数据输入结束以后 eod 变为高电平,持续一个周期,同时 ipd 变为低电平。至此,一次数据输入完成。

3.4.3 FFT 计算数据

数据输入完成后数个周期将自动开始 FFT 计算过程,同时 busy 将变为高电平,表示内核正在进行 FFT 数据的计算,计算完成后 busy 将变为低电平。

3.4.4 输出数据卸载

当 FFT 计算完成后数个周期,自动进入数据卸载阶段,soud 将在第一个卸载数据周期变为高电平,并持续一个周期,opd 也将变为高电平,并在整个卸载数据的过程中保持高电平。在数据卸载的最后一个周期 eoud 将变为高电平,并持续一个周期,opd 也将在下一个周期变为低电平。

IPUG503-1.4 7(15)

4信号定义

Gowin FFT IP 信号定义如表 4-1 所示。

表 4-1 FFT IP 信号定义

序号	信号名称	方向	位宽	描述	
1	xn_re	input	8-36	待转换序列的实部	
2	xn_im	input	8-36	待转换序列的虚部	
3	xk_re	output	8-36	转换后序列的实部	
4	xk_im	output	8-36	转换后序列的虚部	
5	clk	input	1	时钟输入	
6	rst	input	1	系统复位	
7	idx	output	3-16	装载数据时指示下一个触发沿要装载的数 据序列位置,卸载数据时指示当前输出数据 序列的位置。	
8	start	input	1	同步启动信号,高电平有效,至少保持一个时钟周期,且只在内核空闲时被采样,启动 一次变换。	
9	sod	output	1	时域序列启动信号,高电平有效,表示下一 个触发边沿开始将采样数据输入。	
10	ipd	output	1	数据正在输入指示,高电平有效,表示正在 采样输入数据。	
11	eod	output	1	时域序列结束信号,高电平有效,表示数据 输入完成。	
12	busy	output	1	FFT内核变换指示,高电平有效,表示FFT 内核正在进行变换计算。	
13	soud	output	1	频域序列起始信号,高电平有效,表示正在 卸载第一个数据。	
14	opd	output	1	数据正在输出,高电平有效,表示正输出的 数据有效。	

IPUG503-1.4 8(15)

序号	信号名称	方向	位宽	描述	
15	eoud	output	1	频域序列结束信号,高电平有效,表示完成 数据卸载。	
FFT Mode选择Dynamic Through Port					
16	ifft	input	1	ifft=1时,IP完成IFFT功能。 ifft=0时,IP完成FFT功能。	
Scaling Mode选择Dynamic Through Port					
17	sfset	input	1	设定数据缩小比率使能,高电平有效。	
18	sfact	input	4	功能暂不支持,输入可为任意值。	
19	scal	input	2	缩小比率值,无符号数。	

IPUG503-1.4 9(15)

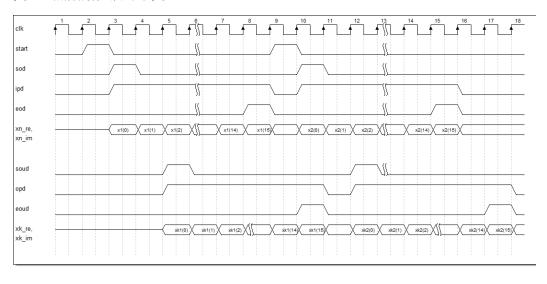
5GUI 参数

Gowin FFT 提供了相关参数,供用户根据实际需求进行配置,具体如表 5-1 所示。

表 5-1 Gowin FFT 参数

序号	参数名称	描述	选项
1	Number of Points	支持的点数	8,16,32,64,128,256,512,1024,2 048,4096,8192,16384。
2	Architecture	FFT架构	目前仅支持Low Resource
3	FFT Mode	FFT变换模式	Forward, Inverse, Dynamic Through Port
4	Output Order	输出序列顺序	Natural, Bit-Reverse。
5	Scaling Mode	缩放模式	RS111, Dynamic Through Port, None。
6	Input Data Width	输入数据位宽	8-36
7	Twiddle Factor Width	旋转因子位宽	8-36
8	Output Data Width	输出数据位宽	8-36
9	Precision Reduction Method	尾数处理模式	Truncation, Rounding.
10	Multiplier Type	乘法器实现类型	DSP Block Based, LUT Based, Automatic。
11	Data Memory Type	数据存储类型	EBR Memory, Distributed, REG&LUT, Automatic.
12	Twiddle Memory Type	旋转因子存储类型	EBR Memory, Distributed, Logic, Automatic.

IPUG503-1.4 10(15)

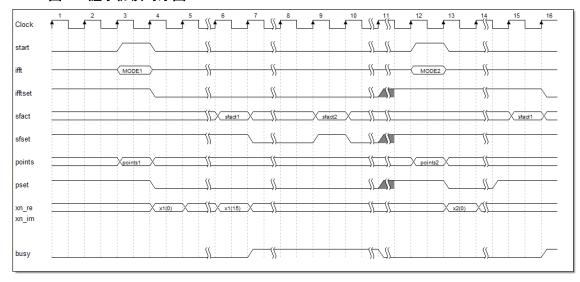

6.1 数据协议

6接口时序

6.1 数据协议

连续数据模式(16点)下的时序图如图 6-1 所示。

图 6-1 点数据协议时序图


IPUG503-1.4 11(15)

6.2 握手协议

6.2 握手协议

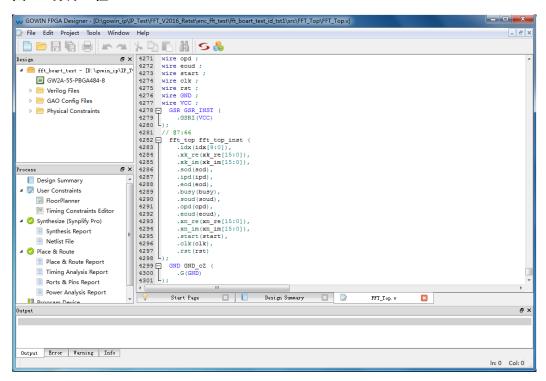
低资源的控制信号握手协议时序如图 6-2 所示。

图 6-2 握手协议时序图

IPUG503-1.4 12(15)

7 应用举例 7.1 打开工程

7 应用举例

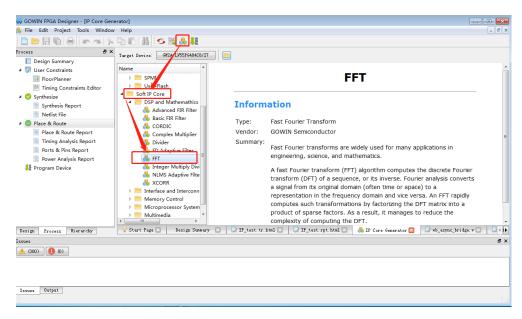

7.1 打开工程

启动高云半导体云源软件后,单击"File> Open ...",打开"Open File"对话框,选择所需工程文件(*.gprj),打开工程,如图 7-1 所示。

注!

有三种方式打开工程,其它打开工程方式请参考 SUG100, Gowin 云源软件用户指南

图 7-1 打开工程


IPUG503-1.4 13(15)

7 应用举例 7.2 调用 Gowin FFT IP

7.2 调用 Gowin FFT IP

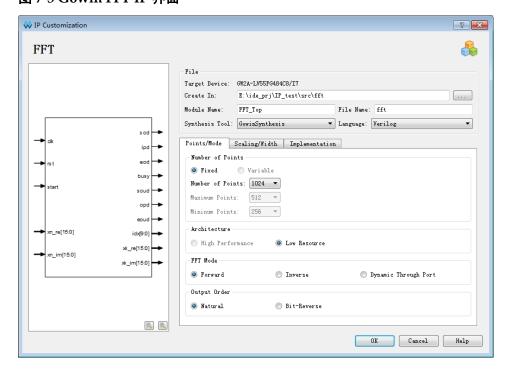
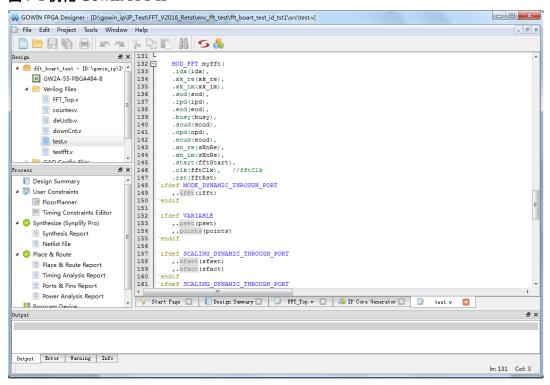

在高云半导体云源软件菜单栏中,按照顺序依次单击"Tool > IP Core Generator > Soft IP Core > DSP and Mathemathics"; 弹出如图 7-2 所示界面; 也可按图示方法打开界面。

图 7-2 IP Core Generator 界面

选择所需器件,如 GOWIN2A-55-PBGA484;在界面左侧"Name"窗口中双击"FFT",弹出如图 7-3 所示界面;默认选项即可,单击"OK",生成 FFT_Top Module。

图 7-3 Gowin FFT IP 界面


IPUG503-1.4 14(15)

7 应用举例 7.3 例化 Gowin FFT IP

7.3 例化 Gowin FFT IP

在工程中例化 FFT_Top,如图 7-4 所示。

图 7-4 例化 Gowin FFT IP

7.4 生成 bitstream 文件

进行必要的约束后,通过综合、布局布线、产生 bitstream 文件。通过 Gowin 下载线把 bitstream 文件下载到开发板或测试版,可通过测试接口观察 FFT 变换结果。

IPUG503-1.4 15(15)

