

Gowin I2C Master & Slave 用户指南

IPUG504-1.1,2018-01-04

版权所有©2018 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明	
2017/10/10	1.0	初始版本。	
2018/01/04	1.1	I2C 开源给用户,删除 GUI 和 IP 等说明。	

i

目录

目	录	i
图	目录	iii
表	目录	iv
1	关于本手册	. 1
	1.1 手册内容	1
	1.2 适用产品	1
	1.3 相关文档	1
	1.4 术语、缩略语	2
	1.5 技术支持与反馈	2
2	功能简介	. 3
	2.1 概述	3
	2.2 特性	
3	信号定义	
	3.1 Gowin I2C Master 信号定义	5
	3.1.1 AXI4-Lite 总线侧信号	
	3.1.2 I2C 总线侧信号	6
	3.2 Gowin I2C Slave 信号定义	6
4	工作原理	. 7
	4.1 系统框图	7
	4.2 I2C 寄存器	
	4.2.1 时钟预分频寄存器	8
	4.2.2 控制寄存器	8
	4.2.3 发送寄存器	9
	4.2.4 接收寄存器	9
	4.2.5 状态寄存器	10
	4.2.6 指令寄存器	11
	4.3 基本操作流程	12

	4.3.1 I2C 主机总线初始化	12
	4.3.2 主机写数据	12
	4.3.3 主机读数据	13
	4.4 Gowin I2C Slave 工作方式	14
5	应用举例	. 15
	5.1 打开工程	15
	5.2 例化 Gowin I2C Master 和 Slave	16
	5.2.1 例化 Gowin I2C Master	16
	5.2.2 例化 Gowin I2C Slave	17
	5.3 生成 bitstream 文件	17

图目录

图 4-	1 系统框图	7
图 4-2	2 预分频寄存器	8
图 4-3	3 控制寄存器	9
图 4-4	4 发送寄存器	9
图 4-5	5接收寄存器	10
图 4-6	6 状态寄存器	10
图 4-7	7 指令寄存器	11

IPUG504-1.1 iii

表目录

表 1-1 术语、缩略语	. 2
表 3-1 AXI4-Lite 总线侧信号定义	. 5
表 3-2 I2C 总线侧信号定义	. 6
表 4-1 Gowin I2C Master 寄存器	. 8
表 4-2 预分频寄存器	. 8
表 4-3 控制寄存器	. 9
表 4-4 发送寄存器	. 9
表 4-5 接收寄存器	
表 4-6 状态寄存器	. 10
表 4-7 指令寄存器	. 11

1 关于本手册 1.1 手册内容

1 关于本手册

1.1 手册内容

Gowin I2C Master 和 Slave 用户指南主要包括功能简介、信号定义、工作原理、实例化等,旨在帮助用户快速了解 Gowin I2C Master 和 Slave 的特性及使用方法。

1.2 适用产品

本手册中描述的信息适用于以下产品:

- 1. GW1N 系列 FPGA 产品: GW1N-1、GW1N-2、GW1N-4、GW1N-6、GW1N-9
- 2. GW1NR 系列 FPGA 产品: GW1NR-4、GW1NR-9
- 3. GW2A 系列 FPGA 产品: GW2A-18、GW2A-55
- 4. GW2AR 系列 FPGA 产品: GW2AR-18

1.3 相关文档

通过登录高云半导体网站 <u>http://www.gowinsemi.com.cn/</u>可以下载、查看以下相关文档:

- 1. GW1N 系列 FPGA 产品数据手册
- 2. GW1NR 系列 FPGA 产品数据手册
- 3. GW2A 系列 FPGA 产品数据手册
- 4. GW2AR 系列 FPGA 产品数据手册
- 5. Gowin 云源软件用户指南

IPUG504-1.1 1(17)

1.4 术语、缩略语

本手册中出现的相关术语、缩略语及相关释义如表 1-1 所示。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
FPGA	Field Programmable Gate Array	现场可编程门阵列
AXI	Advanced Extensible Interface	高级可扩展接口
I2C Bus	Inter-Integrated Circuit Bus	I2C 串行总线

1.5 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: http://www.gowinsemi.com.cn
E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

IPUG504-1.1 2(17)

2 功能简介 2.1 概述

2功能简介

2.1 概述

I2C 总线是一种两线式串行总线,用于连接微控制器及其外围设备。I2C 总线具有简单、有效等显著优点。由于接口直接在组件上,因此 I2C 总线占用空间小,从而减少电路板的空间和芯片管脚的数量,降低互联成本。

Gowin I2C Master 现支持与带 AXI4-Lite 总线的处理器相连接。提供一种低速、双线、串行总线接口,接口通过数据引脚(SDA)和时钟引脚(SCL)连接到 I2C 总线,以完成数据的传输及外围器件的扩展。允许连接到标准(高达 100kHz) 或快速(高达 400kHz)的 I2C 总线。

Gowin I2C Slave 遵循 I2C 总线协议,主要用于与 Master 通信。

IPUG504-1.1 3(17)

2 功能简介 2.2 特性

2.2 特性

Gowin I2C Master

- 符合业界标准的 I2C 总线协议;
- 总线仲裁及仲裁丢失检测;
- 总线忙状态检测;
- 产生中断标志;
- 支持 I2C 不同的通信模式:
 - 标准模式(100kbps)
 - 快速模式(400kbps)
 - 快速(+)模式(1Mbps)
 - 高速模式(3.4Mbps)
- 产生起始、终止、重复起始和应答信息;
- 支持起始、终止和重复起始检测;
- 支持7位寻址模式。

Gowin I2C Slave

- 符合业界标准的 I2C 协议;
- 接收/发送数据功能;
- 支持中断产生;
- 支持 RAM 和 ROM 两种工作模式。

IPUG504-1.1 4(17)

3信号定义

3.1 Gowin I2C Master 信号定义

3.1.1 AXI4-Lite 总线侧信号

表 3-1 AXI4-Lite 总线侧信号定义

序号	信号名称	方向	描述	备注	
1	S_AXI_ACLK	l	工作时钟,上升沿采样	_	
2	S_AXI_ARESETN	l	复位信号	_	
3	AXI_INTA_O	0	中断信号	_	
4	S_AXI_AWADDR	l	写地址信号	AVIAL:4- 写lib.li	
5	S_AXI_AWVALID	l	写地址有效信号	AXI4-Lite 写地址 通道信号	
6	S_AXI_AWREADY	0	写地址准备	AGACIN J	
7	S_AXI_ARADDR	l	读地址信号	A X I A I : 4 -	
8	S_AXI_ARVALID	l	读地址有效信号	AXI4-Lite 读地址 通道信号	
9	S_AXI_ARREADY	0	读地址准备信号	地地行 ケ	
10	S_AXI_WDATA	l	写数据信号		
11	S_AXI_WSTRB	l	写选通信号	AXI4-Lite 写通道	
12	S_AXI_WVALID	l	写有效信号	信号	
13	S_AXI_WREADY	0	写准备信号		
14	S_AXI_RDATA	0	读数据信号		
15	S_AXI_RRESP	0	读响应信号	AXI4-Lite 读通道	
16	S_AXI_RVALID	0	读有效信号	信号	
17	S_AXI_RREADY	I	读准备信号		
18	S_AXI_BRESP	0	写响应信号		
19	S_AXI_BVALID	I	写响应有效信号	AXI4-Lite 写响应 通道信号	
20	S_AXI_BREADY	l	写响应准备	Were ID 7	

IPUG504-1.1 5(17)

3.1.2 I2C 总线侧信号

表 3-2 I2C 总线侧信号定义

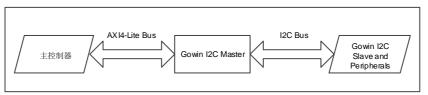
序号	信号名称	方向	描述	备注
1	SCL	Ю	串行时钟线	-
2	SDA	Ю	串行数据线	-

3.2 Gowin I2C Slave 信号定义

表 3-3 Gowin I2C Slave 信号定义

序号	信号名称	方向	描述	备注
1	clk	input	时钟信号	-
2	rst	input	复位信号	-
3	scl	input	串行时钟线	-
4	sda	inout	串行数据线	-
5	int_o	output	中断信号	-

IPUG504-1.1 6(17)


4 工作原理 **4.1** 系统框图

4工作原理

4.1 系统框图

如图 4-1 所示,主控制器将指令或数据通过 AXI4-Lite 总线传送给 Gowin I2C Master, 然后 Gowin I2C Master 通过 I2C 总线下发给 Gowin I2C Slave and Peripherals,或将 Gowin I2C Slave and Peripherals 数据通过 AXI4-Lite 总线上传给主控制器。

图 4-1 系统框图

4.2 I2C 寄存器

Gowin I2C Master 共有 6 个 8 位宽的寄存器:

- 预分频寄存器
- 发送寄存器
- 接收寄存器
- 指令寄存器
- 状态寄存器

注!

- 发送寄存器和接收寄存器地址相同,均为 0x03;
- 指令寄存器和状态寄存器地址相同,均为 0x04,详细信息如表 4-1 所示。

IPUG504-1.1 7(17)

4 工作原理 4.2I2C 寄存器

+ 4 4	.	TOO		→ + ••
777 4-I	Gowin	120	Master	合仔器

寄存器名称	寄存器地址	寄存器位宽	类型	描述
Prescale_reg0	0x00	8	读/写	时钟预分频寄存器的低8位。
Prescale_reg1	0x01	8	读/写	时钟预分频寄存器的高8位。
Control_reg	0x02	8	读/写	控制寄存器
Transmit_reg	0x03	8	写	发送寄存器
Receive_reg	0x03	8	读	接收寄存器
Command_reg	0x04	8	写	指令寄存器
Status_reg	0x04	8	读	状态寄存器

4.2.1 时钟预分频寄存器

时钟预分频寄存器位宽为 16bit,由两个 8 位宽的寄存器组成。预分频寄存器中的数值用于实现对 I2C Master 主时钟进行分频。I2C Master 主时钟为5*SCL,可由公式[master clock frequency / (5*sclk frequency) -1]计算得出预分频寄存器中数值。时钟预分频寄存器的结构和描述如图 4-2 和表 4-3 所示。

图 4-2 预分频寄存器

15	0
Pres	scale data

表 4-2 预分频寄存器

比特	名称	默认值	访问类型	描述
15:0	Prescale data	0	读/写	16 比特预分频数据。

4.2.2 控制寄存器

控制寄存器位宽为 8bit。只使用两个比特([7:6]), 其余 6 个比特([5:0])用作保留位。

控制寄存器的最高位用于使能 I2C Master:

- 若该位为 0,则 I2C Master 不工作;
- 若为 1,则 I2C Master 进入工作状态。 控制寄存器的第 6 位是中断使能控制位,如该位为 1,则使能中断。 控制寄存器的结构和描述如图 4-3 和表 4-3 所示。

IPUG504-1.1 8(17)

4.2l2C 寄存器

图 4-3 控制寄存器

7	6	5	0
EN	IEN	保留	

表 4-3 控制寄存器

比特	名称	默认值	访问类型	描述
7	EN	0	读/写	I2C Master 使能位: ● "0"=不使能 Master; ● "1"=使能 Master。
6	IEN	0	读/写	I2C Master 中断使能位: ● "0"=不使能 Master 中断; ● "1"=使能 Master 中断。
5:0	保留	N/A	读/写	保留

4.2.3 发送寄存器

发送寄存器用于存储主机通过 I2C 总线发送给从机的数据,当发送地址时,第 0 位代表读写信号。发送寄存器的结果和描述如图 4-4 和表 4-4 所示。

图 4-4 发送寄存器

7	1	0
TX DATA		LSB/RW

表 4-4 发送寄存器

比特	名称	默认值	访问类型	描述
7:1	TX DATA	不确定	写	需通过I2C总线发送的数据。
0	LSB/RW	不确定	写	发送数据的最低位;在发送从机地址时,为读写控制位:"1"为读;"0"为写。

4.2.4 接收寄存器

接收寄存器存储主机通过 I2C 总线由从机读取的数据,该寄存器的结构和描述如图 4-5 和表 4-5 所示。

IPUG504-1.1 9(17)

4.2l2C 寄存器

图 4-5 接收寄存器

7	0
F	RX DATA

表 4-5 接收寄存器

比特	名称	默认值	访问类型	描述
7:0	RX DATA	不确定	读	通过 I2C 接收的字节数据。

4.2.5 状态寄存器

状态寄存器描述了 I2C 总线接口的状态。复位时,状态寄存器被清零。状态寄存器的结构和描述如图 4-6 和表 4-6 所示。

图 4-6 状态寄存器

7	6	5	4:2	1	0
RX ACK	Busy	AL	保留	TIP	IF

表 4-6 状态寄存器

比特	名称	默认值	访问类型	描述
7	RX ACK	0	读	来自从机的应答信号。 ● "1"=主机没有接收到应答; ● "0"=主机接收到应答信号
6	Busy	0	读	I2C 总线忙碌信号。 "1"=忙碌;"0"=空闲。
5	AL	0	读	仲裁丢失信号。 当检测到不合要求的停止信号, 或主机驱动 SDA 为高而 SDA 为 低时,该位为"1"。
4:2	保留	N/A	读	保留
1	TIP	0	读	传输进行标识位: ● "1"=正在进行传输; ● "0"=传输结束
0	IF	0	读	中断标志位。 如果 IEN 为"1",则该位置位,有 中断发生时,会导致中断请求。 当仲裁丢失或一个字节的传输 结束时,该位置"1"。

IPUG504-1.1 10 (17)

4.2l2C 寄存器

4.2.6 指令寄存器

Gowin I2C Master 通过写指令寄存器来配置 I2C 的操作模式。指令寄存器存储了 I2C 下一次操作的指令,每次操作完成后,指令寄存器自动清除。因此每次进行开始,读写,停止操作时,AXI4-Lite 总线都要重新写指令寄存器。指令寄存器的结构和描述如图 4-7 和表 4-7 所示。

图 4-7 指令寄存器

7	6	5	4	3	2 1	0
STA	STO	RD	WR	ACK	保留	IACK

表 4-7 指令寄存器

比特	名称	默认值	访问类型	描述
7	STA	0	写	(重复)开始
6	STO	0	写	停止
5	RD	0	写	读
4	WR	0	写	写
3	ACK	0	写	应答
2:1	保留	0	写	保留
0	IACK	0		中断应答。 当置位时,清除等待的中断。

IPUG504-1.1 11 (17)

4.3 基本操作流程

4.3 基本操作流程

Gowin I2C Master 支持通用的 I2C 操作,下面主要对 I2C 写和读操作进行介绍。

4.3.1 I2C 主机总线初始化

向时钟预分频寄存器写入预定的值。该值由时钟频率和 **I2C** 总线的速度 决定。

向控制寄存器写入 8'h80, 使能 I2C Master。

4.3.2 主机写数据

- 1. 设置发送寄存器的值: Slave address + Write bit, 例如: {7'b1000110,1'b0}, 其中 7'b1000110 即 Slave address, Write bit 为 1'b0;
- 2. 设置指令寄存器的值为 8'h90, 使能起始和写命令, 使 I2C 总线开始传输数据:
- 3. 检查状态寄存器的 TIP 位, 以确保命令执行完毕:
- **4.** 设置发送寄存器的值为从机内存的地址,主机发送的数据会写入相应地址的内存;
- 5. 设置指令寄存器的值为 8'h10, 使能写命令, 来发送从机内存的地址;
- 6. 检查状态寄存器的 TIP 位,以确保命令执行完毕;
- 7. 设置发送寄存器为8比特的数据,该数据会写入从机;
- 8. 设置指令寄存器的值为 8'h10, 使能写命令, 来发送数据;
- 9. 检查状态寄存器的 TIP 位,以确保命令执行完毕;
- 10. 重复步骤7到9,不断向从机写数据;
- 11. 设置发送寄存器为最后 1 个字节的数据;
- 12. 设置指令寄存器的值为 8'h50, 使能写命令来发送最后一个字节的数据, 然后发送终止命令。

IPUG504-1.1 12(17)

4.3 基本操作流程

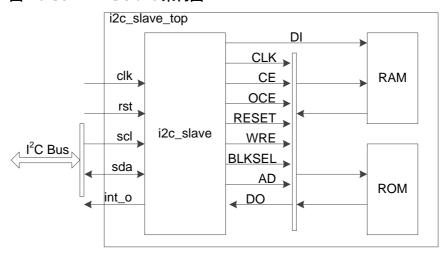
4.3.3 主机读数据

- 1. 设置发送寄存器的值: Slave address + Write bit:
- 2. 设置指令寄存器的值为 8'h90, 使能起始和写命令, 使 I2C 总线开始 传输数据:
- 3. 检查状态寄存器的 TIP 位, 以确保命令执行完毕:
- 4. 设置发送寄存器的值为从机内存的地址, 主机从该内存中读取数据;
- 5. 设置指令寄存器的值为8'h10,使能写命令,来发送从机内存的地址;
- 6. 检查状态寄存器的 TIP 位,以确保命令执行完毕;
- 7. 设置发送寄存器的值: Slave address + Read bit, 例如:

{7'b1000110,1'b1}, 其中 7'b1000110 即 Slave address, Read bit 为 1'b1;

- 8. 设置指令寄存器的值为 8'h90, 使能起始(这种情况是重复起始)和写,将发送寄存器中的数据写到从机;
- 9. 检查状态寄存器的 TIP 位,以确保命令执行完毕;
- 10. 设置命令寄存器的值为 8'h20,来执行读和应答命令,完成由从机读数据;
- 11. 检查状态寄存器的 TIP 位,以确保命令执行完毕;
- 12. 重复 10~11 步骤,继续由从机读数据;
- 13. 当主机停止由从机读数据时,设置命令寄存器的值为 8'h68,由从机读取最后一个字节的数据,执行非应答。

IPUG504-1.1 13(17)


4.4 Gowin I2C Slave 工作方式

Gowin I2C Slave 主要包括 RAM 和 ROM 两种工作方式。若选择 RAM 方式,Gowin I2C Slave 可存储 I2C Master 发送过来的数据,或将 RAM 中的数据传输给 I2C Master; 若选择 ROM 方式,I2C Master 只能读取 ROM 事先存储的数据,目前,ROM 事先存储的为 0~255 共 256 个数据。

Gowin I2C Slave 支持中断功能。若选择 RAM 方式,当写满 RAM 或读空 RAM 时,Gowin I2C Slave 会产生中断信号 int_o。Gowin I2C Slave 主要包括两种中断方式,若选择 0,则写停止,读出写过的数据;若选择 1,则写停止,读停止,回到初始状态。若选择 ROM 方式,Master 只进行读,因此不会出现写满读空的情况。

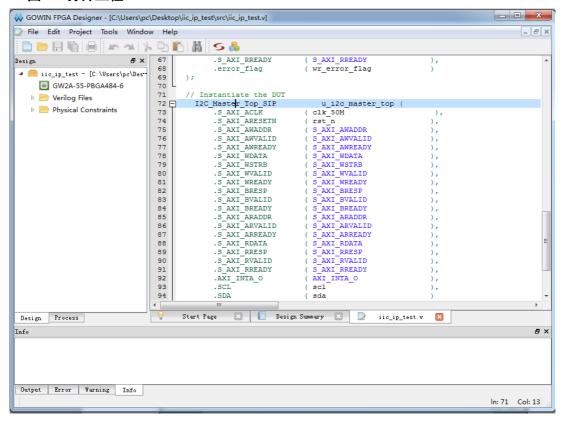
Gowin I2C Slave 主要包括 i2c_slave_top module 和 i2c_slave module。i2c_slave_top module 主要用于实现 i2c_slave module、RAM module、ROM module 之间的互连; i2c_slave module 主要用于驱动 RAM module 或 ROM module,进行数据的存储或发送。Gowin I2C Slave IP 整体架构如图 4-8 所示。

图 4-8 Gowin I2C Slave 架构图

IPUG504-1.1 14(17)

5 应用举例 **5.1** 打开工程

5 应用举例

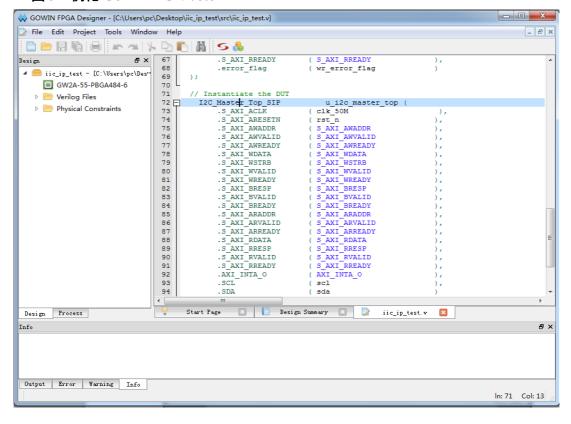

5.1 打开工程

启动 Gowin 云源软件后,单击"File> Open …",打开"Open File"对话框,选择所需工程文件(*.gprj),打开工程,如图 5-1 所示。

注!

有三种方式打开工程,其它打开工程方式请参考_《Gowin 云源软件用户指南》>5 云源软件 使用> 5.2 打开工程。

图 5-1 打开工程

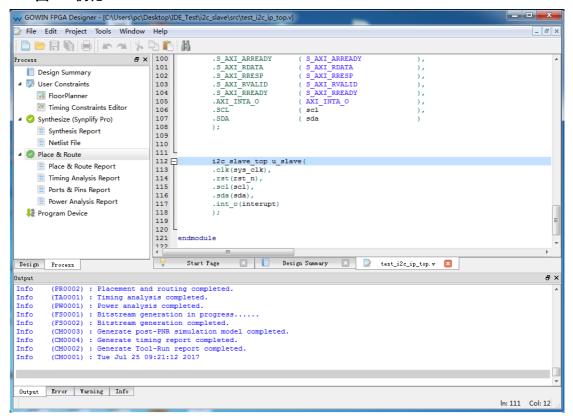

IPUG504-1.1 15(17)

5.2 例化 Gowin I2C Master 和 Slave

5.2.1 例化 Gowin I2C Master

在工程中加载 Gowin I2C Master 相关源文件后例化 I2C_Master_Top_SIP,如图 5-2 所示。

图 5-2 例化 Gowin I2C Master


IPUG504-1.1 16(17)

5 应用举例 5.3 生成 bitstream 文件

5.2.2 例化 Gowin I2C Slave

在工程中加载 Gowin I2C Slave 相关源文件后例化 Gowin I2C Slave, 如图 5-3 所示。

图 5-3 例化 Gowin I2C Slave

5.3 生成 bitstream 文件

进行必要的约束后,通过综合、布局布线产生 bitstream 文件。通过 Gowin 下载线将 bitstream 文件下载至开发板或测试板,可通过测试接口观测通信情况。

IPUG504-1.1 17(17)

