

GW1NS-2C MCU 串口调试

IPUG520-1.3,2019-12-02

版权所有©2019 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任 何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体 概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何 明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知 识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准 确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利, 恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2018/08/21	1.0	初始版本。
2018/11/26	1.1	优化调试过程。
2019/04/12	1.2	 更新 MCU 硬件设计和软件编程库; 更新 MCU 硬件和软件编程参考设计。
2019/08/06	1.2.1	修复已知 SPI 和 ADC 问题。
2019/12/02	1.3	 更新 MCU 编译软件 GMD V1.0; 更新 RTOS 参考设计; 增加 AHB2 和 APB2 扩展总线接口硬件和软件参考设计; 修复已知外部设备 ADC 转换精度问题。

目录

目	录	. i
图	目录	ii
表	目录	iii
1	关于本手册	1
2	硬件资源	2
3	软件资源	3
4	参考设计	4
5	调试流程	5
	5.1 Gowin_EMPU 硬件设计	. 5
	5.1.1 硬件设计	. 5
	5.1.2 物理约束	. 5
	5.2 Gowin_EMPU 软件编程	. 6
	5.3 板级连接	. 6
	5.4 串口调试助手	. 6

IPUG520-1.3

目录

图 5-1 开发板连接	6
图 5-2 串口调试助手	7

表目录

表 5-1 UART 端口约束(参考设计)......5

1_{关于本手册}

Gowin_EMPU for GW1NS-2C 支持软件编程串口调试方法,下位机与上位机通过串口通信,在 PC 端通过串口调试助手软件跟踪调试信息。

- 开发板 DK-EVAL-GW1NS2 V1.1 或 DK-START-GW1NS2 V2.1
- USB 转串口接口转换板或 USB 转串口连接转换线
- PC 机

- Gowin_V1.9.3Beta
- ARM Keil MDK 5.24 或 GOWIN MCU Designer V1.0
- 串口调试助手软件

Gowin_EMPU for GW1NS-2C MCU 支持 ARM Keil MDK 和 GOWIN MCU Designer 软件环境的软件编程串口调试参考设计:

- Gowin_EMPU\ref_design\MCU_RefDesign\Keil_RefDesign\uart
- Gowin_EMPU\ref_design\MCU_RefDesign\GMD_RefDesign\uart

5.1 Gowin_EMPU 硬件设计

5.1.1 硬件设计

- 打开软核生成器 IP Core Generator,选择 Gowin_EMPU (GW1NS-2C)
- 配置 Gowin_EMPU,选择 UART0 或 UART1 或 UART,产生具有 UART 功能的 Gowin_EMPU 硬件设计
- 实例化 Gowin_EMPU,导入用户设计,连接用户设计与 Gowin_EMPU
- 或者使用 Gowin_EMPU 硬件参考设计:
- Gowin_EMPU\ref_design\FPGA_RefDesign\gowin_empu

5.1.2 物理约束

在 DK-EVAL-GW1NS2 V1.1 或 DK-START-GW1NS2 V2.1 开发板的 FPGA IO 端口上,约束第5.1.1 节中产生的 Gowin_EMPU 硬件设计的 UART0 或 UART1 或 UART 的端口,如表 5-1 所示。

表 5-1 UART 端口约束(参考设计)

UART	开发板	端口	FPGA IO
UART0		RXD	8
	DR-EVAL-GWINS2 VI.I	TXD	7
	DK-START-GW1NS2 V2.1	RXD	132
		TXD	131
UART1		RXD	12
	DR-EVAL-GWINS2 VI.I	TXD	9
	DK-START-GW1NS2 V2.1	RXD	130
		TXD	129
UART		RXD	30
	DR-EVAL-GW INSZ VI.I	TXD	29

UART	开发板	端口	FPGA IO
		RXD	23
	DR-START-GWINSZ V2.1	TXD	24

5.2 Gowin_EMPU 软件编程

参见第 4 章参考设计提供的 ARM Keil MDK 或 GOWIN MCU Designer 软件环境的 Gowin_EMPU 软件编程参考设计 uart。

5.3 板级连接

DK-START-GW1NS2 V2.1 开发板使用跳线与 USB 转串口接口转换板 连接, USB 转串口接口转换板连接 PC 机, 如图 5-1 所示。

图 5-1 开发板连接

5.4 串口调试助手

打开串口调试助手软件,如图 5-2 所示。

- 选择正确的通信接口,参考 PC 机设备管理器
- 配置串口通信波特率,参考软件编程设计中设定的波特率
- 打开串口
- 发送与接收调试信息

图 5-2	串口调试助手
-------	--------

XCOM V2.0	
Vart Initial finished Timer Initial: TUMER->NUTCIFAR = 0:	串口选择
TIMERO->RELOAD=25000026; TIMERX->VALUE= TIMERO->RELOAD:	COM3:Silicon Labs CP2 👻
TIMERx->CTRL = 0; NVIC ENABLE IRQ TIMERO	波特率 115200 🔻
TIMERO IRQ ENABLE START TIMERO	停止位 1 🔹
	数据位 8 ▼
2 3 4	奇偶校验 无 💌
5 6	串口操作 🔶 关闭串口
	保存窗口 清除接收
	🔲 16进制显示 🔤 白底黑字
	RTS DTR
	📃 时间戳(以换行回车断帧)
单条发送 多条发送 协议传输 帮助	
	发送
	→ 清除发送
□ 定时发送 周期: 1000 ms 打开文件	发送文件 停止发送
□ 16进制发送 ☑ 发送新行 0% 开源电子	网: www.openedv.com
	当前时间 16:31:33 .:

