

Gowin CORDIC IP 用户指南

IPUG522-1.3,2020-03-26

版权所有© 2020 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明	
2018/09/18	1.0	初始版本。	
2019/03/28	1.1	IP 适用产品更新。	
2019/09/06	1.2	补充 ITERATE 模式相关描述及时序说明。	
2020/03/26	1.3	CORDIC 算法描述更新。	

i

景目

目录	i
图目录	ii
表目录	iii
1 关于本手册	1
1.1 手册内容	1
1.2 相关文档	1
1.3 术语、缩略语	1
1.4 技术支持与反馈	1
2 概述	2
2.1 Gowin CORDIC IP 介绍	2
2.2 CORDIC 算法简介	2
3 特征与性能	3
3.1 主要特征	3
3.2 最大频率	3
3.3 延迟 Latency	3
3.4 资源利用	4
4 功能描述	5
4.1 CORDIC 结构	5
4.2 基本计算	5
4.3 端口描述	6
4.4 时序说明	7
5 CORDIC 调用及配置	9
6 参考设计	11

图目录

图 4-1 CORDIC 实现框图	5
图 4-2 CORDIC IP 端口图	7
图 4-3 CORDIC PIPELINE 模式时序图	8
图 4-4 CORDIC ITERATE 模式时序图	8
图 5-1 CORDIC 配置界面图	9

IPUG522-1.3 ii

表目录

表 1-1 术语、缩略语	. 1
表 2-1 Gowin CORDIC IP 概述	. 2
表 3-1 CORDIC 占用资源	. 4
表 4-1 CORDIC 的 I/O 列表	. 7

IPUG522-1.3 iii

1 关于本手册 1.1 手册内容

1 关于本手册

1.1 手册内容

Gowin CORDIC IP 用户指南主要内容包括功能特征、端口描述、时序说明、配置调用、参考设计等。主要用于帮助用户快速了解 Gowin CORDIC IP 的产品特性、特点及使用方法。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com.cn</u>可以下载、查看 FPGA 产品相关文档。

1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
IP	Intellectual Property	知识产权
LUT	Look-up Table	查找表

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可 直接与公司联系:

网址: www.gowinsemi.com.cn

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

IPUG522-1.3 1(11)

2 概述 2.1 Gowin CORDIC IP 介绍

2 概述

2.1 Gowin CORDIC IP 介绍

Gowin CORDIC IP 能够实现 sin、cos、arctan 计算,实现极坐标与直角坐标之间的相互转换以及向量旋转。

表 2-1 Gowin CORDIC IP 概述

CORDIC IP		
IP 核应用		
	GW1N、GW1NR 系列	
芯片支持	GW2A、GW2AR 系列	
	GW1NZ、GW1NSR 系列	
	GW1NS 系列	
逻辑资源	请参见表 3-2 及表 3-3	
交付文件		
设计文件	Verilog (encrypted)	
参考设计	Verilog	
TestBench	Verilog	
测试设计流程		
综合软件	Synplify_Pro	
应用软件	Gowin Software	

2.2 CORDIC 算法简介

CORDIC 算法,即坐标旋转数字计算机(Coordinate Rotation Digital Computer)算法,是一种利用预存的值进行基本的加减和移位运算,从而能递归计算常用的函数值,如 sin、cos、arctan。Gowin CORDIC IP 能够实现 sin、cos、arctan 计算,实现极坐标与直角坐标之间的相互转换以及向量旋转。

IPUG522-1.3 2(11)

3 特征与性能

3.1 主要特征

- 支持 sin、cos、arctan 计算:
- 支持极坐标与直角坐标之间的相互转换以及向量旋转;
- 可选弧度、角度模式,弧度范围 (-π/2,π/2),角度范围 (-90°,90°);
- 当我们选择 VECTOR 模式时,输入 xi、yi 值小于等于 0.858,当我们进行极坐标转直角坐标时输入 xi 的值小于等于 1.214:
- 复位模式为同步复位;
- 输入 x、y、theta 的位宽为 17 位;
- 有 COMBINATORIAL、ITERATE、PIPELINE 三种实现方法可选择, COMBINATORIAL 是在消耗很多 logic 的情况下在一个周期内求解, ITERATE 模式消耗 logic 少但是时钟延时长,PIPELINE 开始时时钟延时 也较长但是之后可以每个时钟周期都产生结果。

3.2 最大频率

CORDIC 的最大频率主要根据所用器件的速度等级(speed grade of the devices)确定,可达到 95M。

3.3 延迟 Latency

CORDIC Latency 指数据输入至数据输出之间的时间延迟周期。

CORDIC IP 不同模式下输入、输出之间延时不同, PIPELINE 模式输入、输出之间延时 15 个时钟周期, ITERATE 模式延时 17 个时钟周期, COMBINATORIAL 模式为纯组合逻辑, 延时不确定。

IPUG522-1.3 3(11)

3.4 资源利用

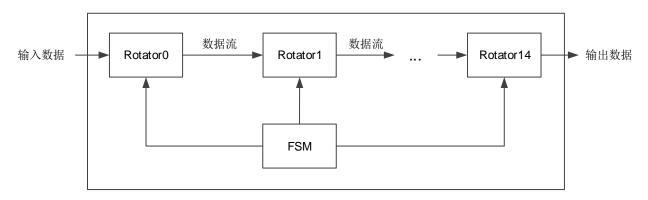
通过 Verilog 语言实现 CORDIC。因使用器件的密度、速度、等级不同以及 IP 配置模式不同,其性能和资源利用情况可能不同。

以高云 GW2A-55 系列 FPGA 为例,以 ITERATE 模式为例介绍 CORDIC 的资源利用情况,CORDIC 其资源利用情况如表 3-1 所示,有关在其他高云 FPGA 上的应用验证,请关注后期发布信息。

表 3-1 CORDIC 占用资源

器件系列	速度等级	器件名称	资源利用	备注
GW2A-55 -7		LUT	474	-
	-7	ALU	54	
		REG	73	

IPUG522-1.3 4(11)


4 功能描述 4.1 CORDIC 结构

4 功能描述

4.1 CORDIC 结构

在 FPGA 中通过状态机控制 rotator 和 shifter 进行迭代,最终实现 CORDIC。实现框图如图 4-1 所示。

图 4-1 CORDIC 实现框图

4.2 基本计算

sin、cos 的计算

高云 CORDIC 现阶段在使用时为了提高精度,进行弧度 sin 和 cos 计算时,除了选择 ROTATE 模式之外,用户输入为 $x_i=0.607253*2^{15}$ 、 $y_i=0$ 、 theta_i=所求弧度角度 $\theta*2^{15}$,最终 $x_i=0.607253*2^{15}$ sin θ 。

arctan 的计算

进行弧度 arctan 计算时需要选择 VECTOR 模式,输入 $x_i = 用户所需 x*2^{15}$ 、 $y_i = 用户所需 y*2^{15}$ 、theta_i=0,最后的输出 theta_o= 2^{15} *arctan。(用户所需 x、y 不能超过 0.858)。

IPUG522-1.3 5(11)

4.3 端口描述

直角坐标转极坐标

进行弧度直角坐标转极坐标时选择 VECTOR 模式,当用户所求直角坐标为(x,y)时,那用户需先将 x、y 先乘 0.607253 再乘 2^{15} 输入 x_i 、 y_i ,得到的 $x_o/2^{15}$ 即为极坐标 ρ 值,输出 theta_o/ 2^{15} 即为极坐标 θ 值。(用户所需 x、y 不能超过 0.858)。

极坐标转直角坐标

极坐标转直角坐标时,进行 ROTATE 运算, $x_i = 用户所需 \rho*0.607253*2^{15}$ 、 $y_i = 0$ 、theta_i = 所求弧度角度 $\theta*2^{15}$,最终 $x_i = 0/2^{15}$, $y_i = 0/2^{15}$ 值即为(ρ , θ)对应的($x_i = 0$) 值。(用户所需 ρ 值不能超过 1.214)。

进行旋转坐标

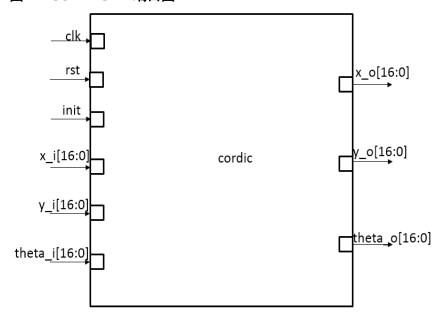
当旋转 θ 角后求旋转后定点坐标时选择 ROTATE 模式,先将用户所求直角坐标(x,y)中的 x、y 值乘 0.607253 再乘 2^{15} 后输入 x_i 、 y_i ,theta_i= 所求弧度角度 θ^*2^{15} ,最后输出 $x_0/2^{15}$ 、 $y_0/2^{15}$ 即为旋转后的坐标。(用户所求 x、y 不能超过 0.858)。

角度模式

角度计算只需把上述角度中的 2^{15} 变成 2^8 即可,x、y 的输入输出仍旧是 2^{15} 。

ITERATE 模式

使用 ITERATE 模式进行计算时,在每次计算开始时 init 信号需要保持一个时钟周期的高电平并且在 init 信号处于高电平期间输入需要计算的数据,17个时钟周期之后得到输出结果;在得到输出结果之后,重新给予输入值以及 init 信号进行新的计算,具体时序请参考 4.4 时序说明。


4.3 端口描述

CORDIC IP的 IO端口如下图 4-2 所示

IPUG522-1.3 6(11)

4 功能描述 **4.4** 时序说明

图 4-2 CORDIC IP 端口图

选择的模式不同,CORDIC IP Core 的接口可能会略有不同。

有关 CORDIC 的 IO 端口详情,如表 4-1 所示。

表 4-1 CORDIC 的 I/O 列表

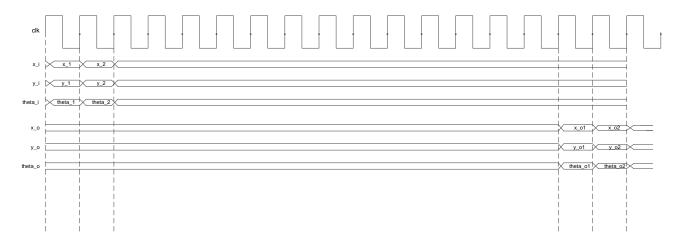
信号	方向	描述
clk	input	时钟
rst	input	复位(高电平有效)
init	input	ITERATIVE 模式加载输入值
x_i	input[16:0]	x 输入,17bit signed
y_i	input[16:0]	y 输入,17bit signed
theta_i	input[16:0]	theta 输入,17bit signed
X_0	output[16:0]	x 输出,17bit signed
y_o	output[16:0]	y 输出,17bit signed
theta_o	output[16:0]	theta 输出,17bit signed

4.4 时序说明

CORDIC 的时序情况如下所述。

PIPELINE 模式每个时钟周期都有输入,在 15 个时钟周期后每个时钟周期都有输出。

COMBINATORIAI 模式是组合逻辑进行迭代,在单个时钟周期产生输入输出。


ITERATE 模式一个时钟周期输入后,延时 17 个时钟周期输出但是必须在输出之后才能继续进行输入。

IPUG522-1.3 7(11)

4 功能描述 **4.4** 时序说明

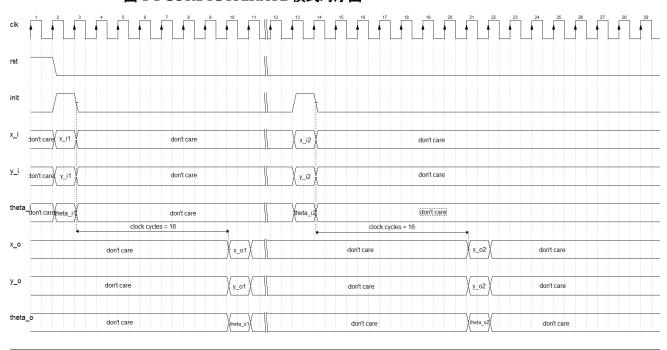
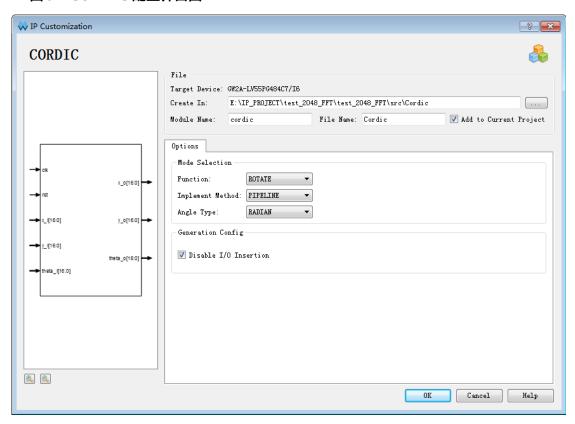

CORDIC PIPELINE 模式的时序图如图 4-3 所示。

图 4-3 CORDIC PIPELINE 模式时序图

CORDIC ITERATE 模式的时序图如图 4-4 所示。

图 4-4 CORDIC ITERATE 模式时序图


IPUG522-1.3 8(11)

5 CORDIC 调用及配置

在高云云源软件界面菜单栏 Tools 下,可启动 IP Core Generator 工具,完成调用并配置 CORDIC IP。

CORDIC 配置界面如图 5-1 所示。

图 5-1 CORDIC 配置界面图

GOWIN CORDIC 有三个选项组: Function、Implement Method 与 Angle Type。

● Function 有 VECTOR 与 ROTATE 两个选项,根据需要完成的功能进行选择;

IPUG522-1.3 9(11)

- Implement Method 有 PIPELINE、ITERATE 和 COMBINATORIAL 三 个选项可选。选择 ITERATE 模式则左侧模块示意图中多出 init 输入信号,PIPELINE、COMBINATORIAL 两种模式则没有此信号输入;
- Angle Type 有 RADIAN 与 DEGREE 两个选项可选,根据实际情况选择弧度或是角度模式。

IPUG522-1.3 10(11)

6 参考设计

本节主要介绍 CORDIC 的参考设计实例的搭建及其使用方法。CORDIC 的设计实例只有一个模块,详细信息见 CORDIC 的 reference design。

在设计实例中, 其运行步骤如下所示:

- 1. 我们将文档中存储地一串数据输入到 CORDIC IP;
- 2. 通过 CORDIC IP 计算后得到输出,再与正确数据进行比较。

利用该设计实例能够快速验证 CORDIC 的功能。当该参考设计应用于板级测试时,用户需为参考设计提供合适的激励,信号的观测可配合在线逻辑分析仪或示波器进行。

IPUG522-1.3 11(11)

