

Gowin Triple Speed Ethernet MAC **User Guide**

IPUG538-1.0E, 2/20/2019

Copyright©2019 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI[®], LittleBee[®], Arora[™], and the GOWINSEMI logos are trademarks of GOWINSEMI and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders, as described at www.gowinsemi.com. GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
2/20/2019	1.0E	Initial version published.

Content

Content	i
List of Figuresii	ii
List of Tables	V
1 About This Guide1	1
1.1 Purpose	1
1.2 Supported Products	1
1.3 Related Documents	1
1.4 Terminology and Abbreviations2	2
1.5 Support and Feedback	2
2 Overview	3
3 Feature and Performance	4
3.1 Key Features	4
3.2 Working Frequency	4
3.3 Resource Utilization	4
4 Function and Structure Description6	6
4.1 Overall Structure6	6
4.2 MAC Layer Interface	7
4.2.1 RGMII Interface	7
4.2.2 GMII Interface	7
4.2.3 MII Interface	8
4.2.4 RGMII/MII Interface	8
4.3 User Interface	9
4.3.1 Ethernet Frame Reception	9
4.3.2 Ethernet Frame Transmission12	2
4.3.3 Flow Control Function	
4.3.4 FCS Forward Function17	
4.3.5 PAD Function	
4.3.6 Transmitting IFG Setting Function	
4.3.7 Jumbo Setting Function	
4.3.8 Management Function	8
5 Port List	0

6 Parameter Configuration	24
7 Reference Design	25
8 Interface Configuration	26

List of Figures

Figure 4-1 The structure chart of Gowin Triple Speed Ethernet MAC IP	. 6
Figure 4-2 Schematic diagram of RGMII pin connection	. 7
Figure 4-3 Schematic diagram of GMII pin connection	. 7
Figure4-4 Schematic diagram of MII pin connection	. 8
Figure4-5 Schematic diagram of GMII/MII pin connection	. 8
Figure 4-6 Normal Ethernet Frame Reception at 1000M Rate	. 9
Figure 4-7 Normal Ethernet Frame Reception at 10M/100M Rate	. 9
Figure4-8 Error Ethernet Frame Reception at 1000M Rate	. 9
Figure4-9 Error Ethernet Frame Reception at 10M/1000M Rate	. 9
Figure4-10 At 1000M Rate Enabling FCS Forward Correct Ethernet Frame Reception	. 10
Figure4-11 At 1000M Rate Enabling FCS Forward Error Ethernet Frame Reception	. 10
Figure4-12 At 100M Rate Enabling FCS Forward Correct Ethernet Frame Reception	. 10
Figure4-13 At 100M Rate Enabling FCS Forward Error Ethernet Frame Reception	. 10
Figure4-14 VLAN Tagged Frame Reception	. 10
Figure4-15 Reception Statistics	. 11
Figure4-16 Normal Ethernet Frame Transmission at 1000M Rate	. 13
Figure4-17 In RGMII Mode Normal Ethernet Frame Transmission at 10M/100M Rate	. 13
Figure4-18 In MII Mode Normal Ethernet Frame Transmission at 10M/100M Rate	. 13
Figure4-19 TX_ER for Ethernet Frame Transmission at 1000M rate	. 13
Figure4-20 TX_ER Ethernet Frame Transmission at 10M/100M rate in RGMII Mode	. 13
Figure4-21 TX_ER Ethernet Frame Transmission at 10M/100M rate in MII Mode	. 13
Figure4-22 Enabling FCS Forward Ethernet Frames Transmission at 1000M rate	. 14
Figure 4-23 Enabling FCS Forward Ethernet Frames Transmission at 1000M rate in MII Mode	. 14
Figure4-24 Retransmission in case of collision	. 15
Figure4-25Abort retransmission in case of collision (Actively)	. 15
Figure4-26Abort retransmission in case of collision (Passively)	. 15
Figure4-27Transmission Statisitics	. 15
Figure4-28Transmitting Pause Frame	. 16
Figure4-29Receiving Pause Frame	. 17
Figure4-30 Schematic Diagram of Connection between mdc and mdio	. 18
Figure4-31 The Write Timing of miim	. 19
Figure4-32 The Read Timing of Miim	. 19

Figure8-1 IP Core Generation Tool	26
Figure8-2 Triple Speed Ethernet MAC IP Configuration Interface	27
Figure8-3 Triple Speed Ethernet MAC IP Help	27

List of Tables

Table1-1 Terminology and Abbreviation	2
Table2-1 Gowin Triple Speed Ethernet MAC IP	3
Table3-1 Resource Utilization	5
Table 4-1 Rx_Statistics_Vector Bit Definition	12
Table 4-2 Bit Definition of tx_statistics_vector	16
Table 5-1 The IO port for Gowin Triple Speed Ethernet MAC IP	21
Table 6-1 Static and Timing Parameters of the Gowin Triple Speed Ethernet MAC	24

1 About This Guide

1.1 Purpose

This user guide is designed to help users quickly learn the function of Gowin Triple Speed Ethernet MAC IP. It mainly helps the user quickly understand the feature, characteristic and usage of Gowin Triple Speed Ethernet MAC IP.

1.2 Supported Products

The information presented in this guide applies to the following products:

- 1. GW1N series (except GW1N-1)
- 2. GW1NR series
- 3. GW2A series
- 4. GW2AR series

1.3 Related Documents

The user guides are available on the GOWINSEMI Website. You can find the related documents at www.gowinsemi.com:

- 1. GW1N series FPGA Products Data Sheet
- 2. GW1NR series FPGA Products Data Sheet
- 3. GW2A series FPGA Products Data Sheet
- 4. GW2AR series FPGA Products Data Sheet
- 5. Gowin YunYuan Software User Guide

1.4 Terminology and Abbreviation

The terminology and abbreviation used in this manual are as shown in Table1-1 below.

Table1-1	Termino	logy and	Abbreviation
----------	---------	----------	--------------

Terminology and Abbreviations	Full Name
IP	Intellectual Property
LUT	Look-up Table

1.5 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com.cn

E-mail: support@gowinsemi.com

+Tel: +86 755 8262 0391

2_{Overview}

This document describes Triple Speed Ethernet MAC IP, which realizes the function description of MAC layer in the IEEE802.3 protocol. Triple Speed Ethernet MAC IP provides a universal access interface for users. It can be integrated into devices that require an Ethernet MAC, a connection typically used for communication applications.

Gowin Triple Speed Ethernet MAC IP									
Supporting devices	GW1N series (except GW1N) ,GW1NR series,GW2A series, GW2AR series								
Logic Resource	See Table3-1。								
Delivered Doc.									
Design Files	Verilog (encryption)								
Reference Design	Verilog								
Testing platform	Verilog								
Test and Design Flow									
Synthesis Software	Synplify_Pro								
Application Software	GowinYunYuan								

Table2-1 Gowin Triple Speed Ethernet MAC IP

3_{Feature and Performance}

3.1 Key Features

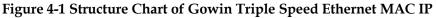
- Support MII/GMII/RGMII interface
- Conform to IEEE 802.3 protocol;
- Support 10/100/1000m rate
- Support full duplex and half duplex mode, conflict detection supported in half duplex mode
- Support users to choose whether to automatically add and verify CRC
- Support the function of adding pad automatically
- Support Ethernet frame classification statistics
- Support Ethernet frame error statistics
- Support IFG configurable functions
- Support Jumbo mode
- Support Flow Control in full duplex mode
- Support Management interface mdc, mdio.

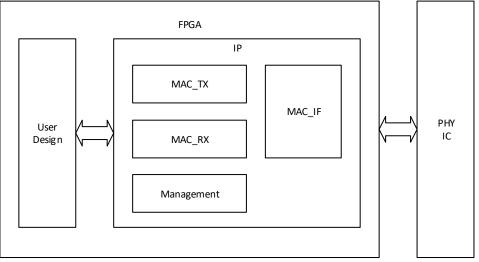
3.2 Working Frequency

The Gowin Triple Speed Ethernet MAC IP working frequency depends on the current operation mode of IP. References are as follows:

- When IP is configured to RGMII mode, the working frequency supports 1000/100/10mhz
- When IP is configured to GMII mode, the working frequency supports 1000mhz
- When IP is configured to MII mode, the working frequency supports 100/10mhz
- When IP is configured to GMII/MII mode, the working frequency supports 1000/100/10mhz

3.3 Resource Utilization


Gowin Triple Speed Ethernet MAC IP adopts Verilog language, which applies in GW1N series (except GW1N-1), GW1NR series, GW2A series and GW2AR series FPGA devices. Different modes have different resource consumption. An overview of resource utilization is given in Table3-1. For the resource utilization of other devices, please refer to the post release information.

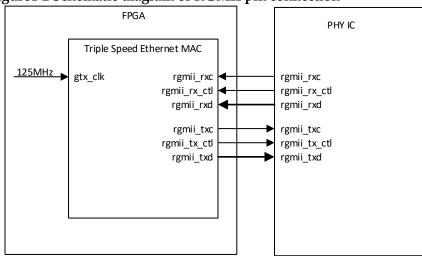

Interface	LUTs	REGs	Device Series	Speed Level
RGMII	1298	1284	GW2A18	-8
GMII	899	1041	GW2A18	-8
MII	1142	1224	GW2A18	-8
GMII/MII	1245	1261	GW2A18	-8

4 Function and Structure Description

4.1 Overall Structure

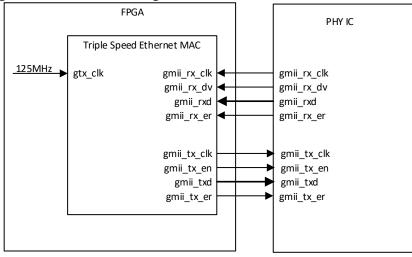
The basic structure of Gowin Triple Speed Ethernet MAC IP is shown in figure 4-1, mainly including MAC_IF, MAC_RX, MAC_TX, Management and other modules. The User Design in Figure 4-1 is the user design in FPGA, and the PHY IC is the chip of Ethernet PHY, which is externally connected.

- MAC_TX module realizes the conversion from user data format to Ethernet data format, as well as CRC, PAD, Flow Control, frame statistics and other functions.
- MAC_RX module realizes the conversion from Ethernet data format to user data format, as well as CRC, Flow Control, IFG configuration, frame statistics, error indication and other functions.
- AC_IF module realizes the function of Ethernet data adaption to various MAC interface, such as RGMII, GMII, MII.
- Management realizes MDC and MDIO functions of Ethernet management interface and facilitates users to configure PHY IC.

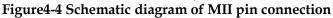

4.2 MAC Layer Interface

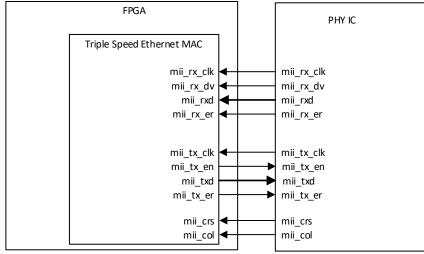
IP supports 4 MAC layer interfaces, namely RGMII interface, GMII interface, MII interface and GMII/MII interface. The supporting mode of each interface is listed as follows:

- RGMII interface supports 1000/100/10m full-duplex and 100/10m half-duplex;
- GMII interface supports 1000M full-duplex;
- MII interface supports 100/10m full-duplex and 100/10m half-duplex;
- GMII/MII interface supports 1000/100/10m full-duplex and 100/10m half-duplex.

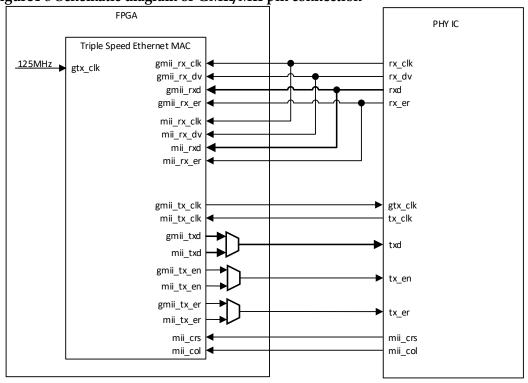

4.2.1 RGMII Interface

The RGMII interface includes 12 lines, namely rgmii_rxc, rgmii_rx_ctl, rgmii_rxd[3:0], rgmii_txc, rgmii_tx_ctl, rgmii_txd[3:0]. The user needs to provide 125MHz clock for IP through gtx_clk. Figure4-2 is the schematic diagram of connecting pin of RGMII interface and PHY chip. Figure4-2 Schematic diagram of RGMII pin connection


4.2.2 GMII Interface


GMII interface includes 22 lines, namely gmii_rx_clk, gmii_rx_dv, gmii_rxd[7:0], gmii_rx_er, gmii_tx_clk, gmii_tx_en, gmii_txd[7:0], gmii_tx_er. The user needs to provide 125MHz clock for IP through gtx_clk. Figure4-3 is the schematic diagram of connecting pin of GMII interface and PHY chip. Figure4-3 Schematic Diagram of GMII Pin Connection

4.2.3 MII Interface


MII interface includes 16 lines, namely mii_rx_clk, mii_rx_dv, mii_rx_dv, mii_rxd[3:0], mii_rx_er, mii_tx_clk, mii_tx_en, mii_txd[3:0], mii_tx_er, mii_crs, mii_col. Figure4-4 is the schematic diagram of connecting pin of MII interface and PHY chip.

4.2.4 RGMII/MII Interface

GMII/MII interface is the combination of GMII interface and MII interface. It is usually connected to PHY chips supporting both GMII and MII. The transmit direction requires the user to select TXD, tx_en, and tx_er signals based on the current Ethernet rate. Figure4-5 is the schematic diagram of connecting pin of GMII/MII interface and PHY chip. Figure4-5 Schematic diagram of GMII/MII pin connection

4.3 User Interface

4.3.1 Ethernet Frame Reception

Receiving Ethernet frame is the process of converting MAC interface data into user interface data. All received signals are synchronized with rx mac clk.

Normal Frame Reception

Figure 4-6 shows the normal Ethernet frame receiving process at1000M rate.

Figure 4-7 shows the normal Ethernet frame receiving process at 10M/100M rate.

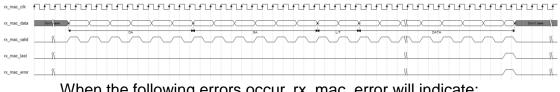
When rx mac valid is 1, it means that rx mac data for this period is valid: When rx mac valid and rx mac last are both 1, rx mac data for this period is valid and is the last byte of this Ethernet frame. It should be noted that there is no buffer in IP to cache the incoming Ethernet frames, so the user must always be ready to receive Ethernet frames. When the first byte of the frame begins to appear in the user interface, the data is received continuously until the entire frame is received.

Figure4-6 Normal Ethernet Frame Reception at 1000M Rate

rx_mac_clk		~							<u></u>													1				r_f	_
rx_mac_data	Dor	1 0848	×	X	×	X	\sim	X	×	\sim	\sim	\sim	x	×	X	X	X	X	\sim		Þ				Dor	n'i cere 👔	
rx_mac_valid		<u> </u>				UA										01				5	5		 	 	<u> </u>		_
rx_mac_last																				\$	L	_		 	\sim		_
rx_mac_error		\$																		S	L		 	 			_

Figure 4-7 Normal Ethernet Frame Reception at 10M/100M Rate

rx_mac_data	Don't car	X		X	 \times				X		ж					Don't Gate
rx_mac_valid			~~~			~	54	~	*	ыт 	*	~~		DATA		
rx_mac_last									 				(
rx_mac_error																11


Error Frame Reception

When rx mac error is 1, it indicates that there are certain errors in the current frame, and the specific error type can be checked by rx statistics valid and rx statistics vector signals. Rx mac error indicates the error state of the current frame only if rx mac last is 1. Figure 4-8 and Figure 4-9 show the receiving process of an error frame at 1000M and 10M/100M rate respectively.

Figure 4-8 Error Ethernet Frame Reception at 1000M Rate

rx_mac_clk			-4	4						ſ			1	1	1		<u></u>					 r_4			-
rx_mac_data	Don't care	\		\sim	\sim	\sim	\sim	\sim	×	\sim	X	X	X	\sim	×	\sim)(\sim	\sim	x_1px				ant care	
rx_mac_valid		1										54								1		 			_
rx_mac_last	1	1																			 	 	<u> </u>		_
rx_mac_error		1																			 	 			_

Figure4-9 Error Ethernet Frame Reception at 10M/1000M Rate

When the following errors occur, rx mac error will indicate:

- 1. Receiving FCS error frame ;
- 2. Receiving align frame;
- 3. In the receiving process, the MAC interface RX_ER valid signal is received ;
- 4. Conflicts occur in half duplex;
- 5. Frame length error. When the Jumbo function is disabled, receive non-vlan frame of less than 64 bytes or more than 1518 bytes, and vlan frames of less than 64 bytes or more than 1522 bytes; When Jumbo function is disabled, receive frame of less than 64 bytes.

Received Frame FCS Forward

When the user sets IP to the mode of receiving FCS Forward, IP will send the received FCS field to the user side, as shown in Figure4-10, Figure4-11, Figure4-12 and Figure4-13. Now, IP still automatically verifies the FCS field and indicates by rx_mac_error and rx_statistics_vector. Figure4-10 1000M Rate Enabling FCS Forward Correct Ethernet Frame Reception

rx_mac_data	Don't care	×	X	X	X	\sim	X	ж	<u> </u>			×	\sim	×	X	X		X	\sim	X	\sim	X	X	× •	ion'i care	
rx_mac_valid	((1			DA			×	 	54	 	M.	UT	M.			DATA ((×		FCS		*	"	
TA_INAC_VAIN		Ť.															Y							_		
rx_mac_last											 						1							<u> </u>		-
rx_mac_error	(5								((

Figure4-11 1000M Rate Enabling FCS Forward Error Ethernet Frame Reception

rx_mac_clk		ЧЧ		- f							<u></u>		r		Ţ	Ļ	Lf L	<u>_</u>		<u> </u>		<u></u>		1
rx_mac_data	Don't care			x	×	X	X	X	X	X	×	X	¥	X		-IIX		X	X	X	X	×	on't care	-
rx_mac_valid			DA					-							DATA							<u> </u>		<u> </u>
rx_mac_last																						~	(<u> </u>
rx_mac_error	8															55						<u> </u>	5	

Figure4-12 100M Rate Enabling FCS Forward Correct Ethernet Frame Reception

rx_mac_clk	flflf	- fl	flf	Lf L	Гŀ	ЦП	L . L	flf	Ţ	LΠ	£.	flf	Ŀf	ЦП	f Lf	Ŀ	ЦП	ſĿ	flf	цī	flf	- f	LΓ	£.	FLf	цП	£14	Ŀ	Ŀf	ել	fц	Ŀ	ĿГ	flf	Ŀ	L-L	ΓĿΓ	
rx_mac_data	Don't			_		_	_		$ \rightarrow $		×		×			×	_x	_	×	×		×	×		x		1	×	X			X			×	Don't cer		
rx_mac_valid			$\overline{}$	~_			~		Ý		7			7		5A	4	<u> </u>		Ţ			Ť				ir_		Ý	~		FCS			<u> </u>		1	
rx_mac_last								-																	_		<u>%</u>		_									
rx_mac_error								-			_			_						_	-				-	_	<u>n</u>		_				_	-			1	

Figure4-13 100M Rate Enabling FCS Forward Error Ethernet Frame Reception

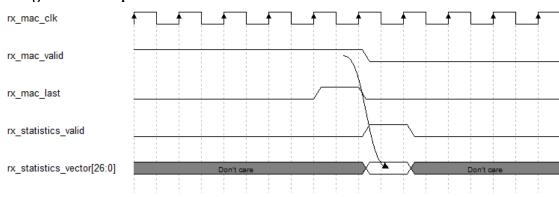
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ษษษะ
	Don't care
n_mac_last	

#### **VLAN Tagged Frame Reception**

When IP receives a VLAN Tagged frame, it indicates that this frame is a VLAN Tagged frame in rx_statistics_vector. VLAN Tagged frame is the 0x8100 frame which is two bits after the source MAC address. The VLAN field is defined as 4 bytes in IEEE802.3. The first two bytes is 0x8100 and the last two bytes is VLAN label, as shown in Figure4-14. Figure4-14 VLAN Tagged Frame Reception

## 

#### **Receiving MAC Control Frame**


When IP receives a MAC Control frame, it indicates that this frame is a MAC Control frame in rx_statistics_vector . MAC Control frame is a frame with L/T field of 0x8808 . When the L/T field is 0x8808, this frame is the MAC Control frame, which is defined in IEEE802.3.

#### **Reception when Ethernet line is abnormal**

Single-byte frame may occur on line in the event of an abnormal Ethernet line or a half-duplex collision. At this moment, the first rx_mac_valid and rx_mac_last of the user-side interface will be both 1, that is, after receiving a byte, the frame ends. The user application program needs to handle the occurrence of such an exception.

#### **Reception Statisitics**

Statistics of reception frames are output at rx_statistics_vector signal. When rx_statistics_valid is 1, it indicates that rx_statistics_vector is valid, and rx_statistics_vector indicates the statistical information of just received frames. The timing sequence is shown in Figure4-15. The bit definition of rx_statistics_vector is shown in Table 4-1



#### **Figure4-15 Reception Statistics**

Location	Name	Description
26	RX Alignment Error	If the received frame is not an integer multiple of bytes, set 1.
25	RX Length Error	If the received frame length does not meet the standard, set 1
24	RX FCS Error	If the received frame has an FCS error, set 1
23	RX_ER Error	If the MAC interface RX_ER signal is valid in the process of reception, set 1
22	RX Collision Error	In half duplex mode, if a collision occurs during the frame reception, set 1
21:6	RX Frame Length	The length of received frame, including FCS field
5	RX Flow Control Frame	In full duplex mode, if the received frame is a flow control frame, set 1
4	RX MAC Control Frame	If the received frame is a MAC Control frame, set 1
3	RX VLAN Frame	If the received frame is a VLAN frame, set 1
2	RX Multicast Frame	If the received frame is a multicast frame, set 1
1	RX Broadcast Frame	If the received frame is a broadcast frame, set 1
0	RX Unicast Frame	If the received frame is a unicast frame, set 1

Table 4-1 Rx_Statistics_Vector Bit Definition

#### **4.3.2 Ethernet Frame Transmission**

Sending Ethernet frames is the process of converting user interface data to MAC interface data. All received signals are synchronized with tx_mac_clk.

#### **Normal Frame Reception**

Figure 4-16 shows the normal Ethernet frame transmission process at 1000M rate.

Figure4-17 shows the normal Ethernet frame transmission process at a rate of 10M/100M in RGMII. mode. In RGMII mode, tx_mac_clk is 125MHz. At a rate of 10M, tx_mac_ready is valid for every 100 periods; At a rate of 100M, tx_mac_ready is valid for every 10 periods.

Figure 4-18 shows the normal Ethernet frame transmission process at a rate of 10M/100M in MII mode.

During the entire frame transmission process, tx_mac_valid must remain at 1 until the end of the frame. When tx_mac_ready and tx_mac_last are both 1, tx_mac_data is transmitted in this period and is the last byte of the Ethernet frame for that frame. It should be noted that there is no buffer in the IP to cache the transmitted Ethernet frames. Therefore, when the first byte starts to be transmitted, the user needs to prepare subsequent bytes and assign to tx_mac_data in time when tx_mac_ready is 1 until the entire frame is transmitted.

#### Figure4-16 Normal Ethernet Frame Transmission at 1000M Rate

tx_mac_clk				Ţ	~			ſ	ſ	1	ſ		<u>_</u>	ſ	1	<u>_</u>	ſ	ţ.	<u></u>	ff	Ţ	1	Ц	Ţ	Ъf	7	Ţ	
tx_mac_data	Don't care	s			1	 ×	×	$\sim$	$\sim$		×	×	$\sim$	$\sim$		$\sim$	×	$\sim$	×	$\sim$	$\square$		X		$ \supset $	Don't	care (	I
tx_mac_valid	(	<u>%</u>	—		5	DA					-			SA			M	UT	M			DATA			-			
tx_mac_ready					1	 																<u> </u>			_			
tx_mac_last		<u> </u>																							_			
tx_mac_error	(	<u> </u>																										

#### Figure4-17 In RGMII Mode Normal Ethernet Frame Transmission at 10M/100M Rate

	0									,	
tx_mac_clk	fifter.	กกกก	<u>nnnn</u>	กกกก	กกกก	<u>fift</u>	եեեե	AAAAAA	ւրեւելել	กกกกกก	กกกกกก
tx_mac_data	Don'i sare	<u></u>				I_		X	<u> </u>	X1[	Don't care
tx_mac_valid		1	1	11	1	1	5			11	
tx_mac_ready		55			!L						lL
tx_mac_last	<u>I</u> [										
tx_mac_error											<u>s</u>

#### Figure4-18 In MII Mode Normal Ethernet Frame Transmission at 10M/100M Rate

_mac_clk	+	L†	L†	L†	Lt	Lt	Lt	Lt	1	1	14	t L	t L	t L	t L	tι	1 L	_†	<u>+</u>	_†	<u>+</u>	Lt.	L†	Lt.	L†	L†	Lt.	L†	L†	Lt	L†	Lt	Lt	· Lt	Lt	Ŀt	1	Ŀt	Ŀt	Lt	Lt	Lt	Lt	Ŀt	Ŀt	Ŀt	Lt	Lt	Lt	Ŀŧ	Lt	Lt	

tx_mac_data	Don't care	()	X_	X		xx		XX_	X	XX	××	X		X Don't care	
tx_mac_valid		1		DA			*		SA		L/T	*4	DATA	*	
tx_mac_ready				$\sim$	~		~					~~~			
tx_mac_last															
tx_mac_error															
	ייע דיו				. т	• • • •	•	•							

#### TX_ER Error Frame Transmission

During the transmission process, when tx_mac_error and tx_mac_ready are both 1, it indicates that there is an error in the current transmitted frame. IP will transmit TX_ER transmitted data error indication on the MAC interface.

Figure4-19 shows the transmission process of TX_ER Ethernet frame at a rate of 1000M.

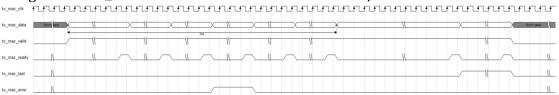

Figure4-20 shows the transmission process of TX_ER Ethernet frame at a rate of 10M/100M in RGMII mode.

Figure4-21 shows the transmission process of TX_ER Ethernet frame at a rate of 10M/100M in MII mode.

#### Figure4-19 TX_ER for Ethernet Frame Transmission at 1000M rate

tx_mac_clk		1					ſ						<u>_</u>			ſĿſ						1
tx_mac_data	Don't care	1	×—	 35	$\sim$	×		×	×	$\sim$	×	×	×	$\sim$	×	) () ()	×	$\rightarrow$		$\sim$	Dor	t care
tx_mac_valid		//	—	\$\$	DA				-		SA			UT		DATA			FCS		<u> </u>	
tx_mac_ready				 <u>%</u>	 											1						
tx_mac_last		<u></u>						 			 					<u> </u>					<u> </u>	
tx_mac_error		<u></u>			 			 			 <u> </u>											

Figure4-20 TX_ER Ethernet Frame Transmission at 10M/100M rate in RGMII Mode



#### Figure4-21 TX_EREthernet Frame Transmission at 10M/100M rate in MII Mode



#### **Transmission Frame FCS Forward**

When the user sets IP to be transmission FCS Forward mode, the IP will not automatically add FCS field. After the user transmits the DATA field, the FCS field needs to be calculated and added manually, as is shown in Figure4-22 and Figure4-23.

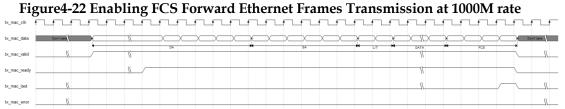
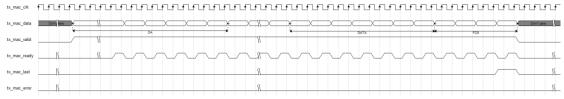
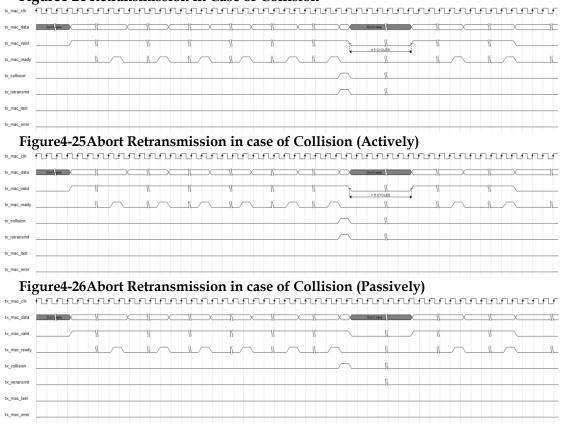



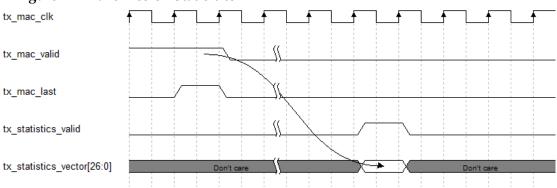

Figure4-23 Enabling FCS Forward Ethernet Frames Transmission at 1000M rate in MII Mode

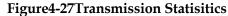



#### Transmission in half duplex mode

In half duplex mode, IP indicates the transmission state through tx collision and tx retransmit signal if the user does not detect any collision during the transmission. The Ethernet frames can be transmitted according to the above full duplex transmission process. If the user detects a collision during the transmission, the following should be done to ensure the correct transmission of data. When the user detects the tx collision to be1, it means that there is a collision on the line. The user must immediately set tx_mac_valid to 0 when he detects the tx_collision to be 1, so as to end the Ethernet frame transmission. With the detection of tx collision to be1, and if tx retransmit is 1, it indicates that the collision is within a reasonable range, and the user can decide whether to retransmit the frame. If the user is ready to retransmit the frame, please set tx_mac_valid to 1 within 5 periods to prepare for the retransmission of the frame. If the user prepares to abort to retransmit the frame, please set tx mac valid to 1 after 5 periods to prepare for the next frame transmission. With the detection of tx_collision to be1, and if tx_retransmit is 0, it indicates that the collision is not within a reasonable range (a frame with more than 16 collisions, or collisions occurring after 64 bytes having been sent), then the user needs to abort the transmission of this frame.

Figure 4-24 shows the retransmission process when a collision occurring.


Figure 4-25 and Figure 4-26 show respectively the non-retransmission process when a collision occurring.




#### Figure4-24 Retransmission in Case of Collision

#### **Transmission Statisitics**

Transmission frames statistics is output at tx_statistics_vector signal. When tx_statistics_valid is 1, it indicates that tx_statistics_vector is valid, and at this point tx_statistics_vector indicates the statistics information of just transmitted frames. The timing sequence is shown in Figure4-27. The bit definition of tx_statistics_vector is shown in Table 4-2..





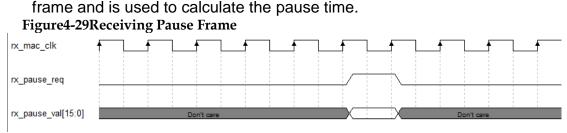
Location	Name	Description
28	TX Collision	In half duplex mode, if a collision occurs when this frame is transmitted, set1.
27:24	TX Attempts	In half duplex mode, the number of times this frame was attempted to be transmitted, 0 represents the first transmission;1 represents the second transmission;15 represents the 16th transmission.
23	Excessive Collision	In half duplex mode, if the frame is on the 16th attempt to transmit, collision occurring, set 1.
22	Late Collision	If the collision occurs after 64 bytes having been transmitted, set 1
21:6	TX Frame Length	Transmission frame length, including FCS field
5	TX Flow Control Frame	In full duplex mode, if the IP is configured to transmit a flow control frame, set 1
4	TX MAC Control Frame	If the transmission frame is MAC Control frame, set 1
3	TX VLAN Frame	If the transmission frame is VLAN frame, set 1
2	TX Multicast Frame	If the transmission frame is Multicast frame, set 1
1	TX Broadcast Frame	If the transmission frame is Broadcast frame, set 1
0	TX Unicast Frame	If the transmission frame is Unicastt frame, set 1

Table 4-2 Bit Definition of tx_statistics_vector


#### **4.3.3 Flow Control Function**

IP supports the Flow Control function in full duplex mode. In full duplex mode, user can configure IP to transmit or receive Pause frame to achieve flow control.

#### **Transmitting Pause Frame**


Users can set the tx_pause_req signal to 1 to transmit a pause frame. The value of tx_pause_val is inserted into the parameter field of the pause frame to calculate the pause time. Tx_pause_source_addr is transmitted as the source MAC address for the pause frame, and the transmission order is from the low to high bytes.

#### Figure4-28Transmitting Pause Frame



#### **Receiving Pause Frame**

When the IP receives a pause, it sets the rx_pause_req signal to 1. The value of rx_pause_val is the parameter field that receiving the pause



#### 4.3.4 FCS Forward Function

IP supports FCS Forward function that configures transmission and reception respectively.

#### **Receiving FCS Forward function**

When the user disables the FCS Forward function, the FCS field will not be output to the user side. IP automatically verifies the FCS field and its results will be output to rx_statistics_vector corresponding field. When the user enables the FCS Forward function, the FCS field will be output to the user side. IP still automatically verifies the FCS field and its results will be output to rx_statistics_vector corresponding field.

#### **Transmitting FCS Forward Function**

When the user disables the FCS Forward function, the user does not need to calculate and transmit the FCS field. The IP calculates the FCS field and adds it to the Ethernet frame automatically. When the user enables the FCS Forward function, the user calculates the FCS field and transmits it to the IP on the user side.

#### 4.3.5 PAD Function

When the user disables the FCS Forward function, if the frame transmitted by the user to IP is less than 60 bytes (excluding FCS), IP will automatically complement 0 to 60 bytes then add FCS field to ensure that the Ethernet frame transmitted meets the requirement of minimum 64 bytes. When the user enables the FCS Forward function, the IP will not automatically complement 64 bytes, and the actual transmitted data and length are completely determined by the user.

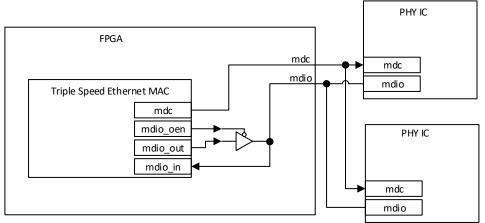
#### 4.3.6 Transmitting IFG Setting Function

When the IP is in full duplex mode, the user can set the minimum IFG for the Ethernet transmission. When the IP is in half duplex mode, the minimum IFG transmission set by user is ignored, and the minimum IFG is still 12 bytes.

When the user disables the IFG function, IP transmits a minimum IFG of 12 bytes, or 96 bit. When the user enables the IFG function, IP determines the minimum IFG based on the user settings. If the minimum IFG set by the user is less than 8 bytes, the actual minimum IFG of IP is 8 bytes; If the user sets the minimum IFG to be greater than or equal to 8 bytes, the IP's actual minimum IFG is the value set by the user. The minimum IFG can be set to a maximum of 255 bytes.

#### 4.3.7 Jumbo Setting Function

IP supports the Jumbo function. When the user disable the Jumbo function, IP judges that the correct Ethernet frame length was 64 bytes to 1518 bytes (non-vlan frames) or 64 bytes to 1522 bytes (VLAN frames). If the Ethernet frames received are not within the above range, rx_mac_error


will indicate that there is an Error on this frame and RX Length Error is 1 in rx_statistics_vector. When the user enables the Jumbo function, IP judges an error only if the Ethernet frames received are smaller than 64 bytes.

#### 4.3.8 Management Function

IP provides users with MIIM interface to facilitate them to configure PHY chip registers through MDC and MDIO.

MDC clock comes from CLK input clock frequency division. Users need to configure frequency divider according to CLK input clock to make MDC clock frequency meet the requirements of PHY chip. Please refer to table 6-1 for configuration method. Connection between MDC and MDIO is shown in Figure4-29.

Figure4-30 Schematic Diagram of Connection between mdc and mdio



Mdio connection refers to verilog as follows: assign mdio_in = mdio; assign mdio = (!mdio oen) ? mdio out : 1'bz;

All miim interface signals are synchronized with the CLK clock.

To write, the user needs to set miim_wren to 1 one period. IP will raise miim_busy, indicating that the miim bus is doing the write. When miim_busy is 0 again, it indicates this write has ended. And the user is ready for the next read or write. The miim_phyad, miim_regad, and miim_wrdata signals are ready on the bus when miim_wren is 1, and it remains unchanged when miim_wren is 1. The write timing of miim is shown in Figure4-30.

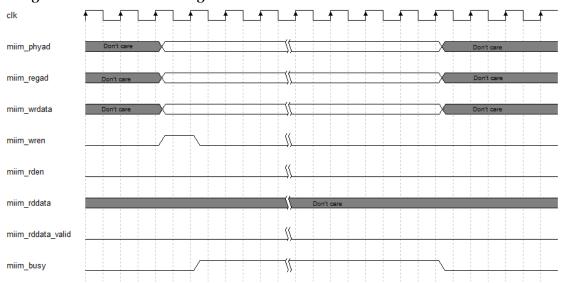
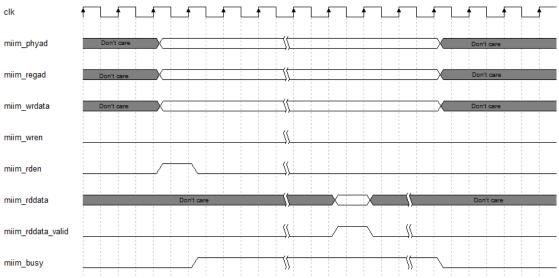




Figure4-31 The Write Timing of miim

To read, the user need to set miim_rden to 1 one period. IP will raise miim_busy, indicating that the miim bus is doing the read. When miim_busy is 0 again, it indicates that this read has ended and the user can do the next read or write. The miim_phyad and miim_regad signals are ready on the bus when miim_rden is 1, and it remains unchanged when miim_busy is 1. During the read, the user monitors the miim_rddata_valid signal. When miim_rddata_valid is 1, the user can sample the value of this read in the miim_rddata signal. The read timing of Miim is shown in Figure4-31. Figure4-32 Read Timing of Miim



## **5**_{Port List}

The IO port for Gowin Triple Speed Ethernet MAC IP is shown in Table 5-1.

Signal	<u>-1/0</u>	Data	Gowin Triple Speed Ethernet MAC IP Description
Signal	1/0	Width	Description
125MHz clock input		, that i	
gtx_clk	input	1	125M clock input. When IP uses RGMII or GMII interface,
-			125MHz clock should be input
<b>RGMII Interface</b>			
rgmii_rxc	input	1	RGMII receives clock
rgmii_rx_ctl	input	1	RGMII receives control
rgmii_rxd	input	4	RGMII/MII receive data
rgmii_txc	output	1	RGMII receives data
rgmii_tx_ctl	output	1	RGMII transmits control
rgmii_txd	output	4	RGMII transmits data
GMII Interface			
gmii_rx_clk	input	1	GMII receives clock
gmii_rx_dv	input	1	GMII receives enable
gmii_rxd	input	8	GMII receives data
gmii_rx_er	input	1	GMII receives error
gmii_gtx_clk	output	1	GMII receives clock
gmii_tx_en	output	1	GMII transmits enable
gmii_txd	output	8	GMII transmits data
gmii_tx_er	output	1	GMII transmits error
MII Interface			
mii_rx_clk	input	1	MII receives clock
mii_rx_dv	input	1	MII receives enable
mii_rxd	input	4	MII receives data
mii_rx_er	input	1	MII receives error
mii_tx_clk	input	1	MII transmits clock
mii_tx_en	output	1	MII transmits enable
mii_txd	output	4	MII transmits data
mii_tx_er	output	1	MII transmits error
mii_col	input	1	MII collision signal
mii_crs	input	1	MII carrier signal
Interface Status Conf	igure		
speedis1000	input	1	Selecting signal based on Ethernet rate. when IP works in RGMII or GMII/MII mode, configure IP to work at 1000M rate or 10M/100M rate: 1:1000M 0:10M/100M
speedis10	input	1	Selecting signal based on Ethernet rate. When IP works in RGMII mode and speedis1000 is 0, the configured IP works at 10M or 100M rate: 1:10M 0:100M It is should be noted when speedis1000 is1, this configuration pin is ignored
duplex_status	input	1	Ethernet duplex mode configures signal. When IP works in RGMII, MII or GMII/MII mode, configure IP working duplex mode : 1:half duplex 0:full duplex
Reset		1	
rstn	input	1	IP Reset signal, active low
User Interface		T	
rx_mac_clk	output	1	The user side receives clock
rx_mac_valid	output	1	The user side receives enable

#### Table 5-1 The IO port for Gowin Triple Speed Ethernet MAC IP

Signal	I/O	Data Width	Description
rx_mac_data	output	8	The user side receives data
rx_mac_last	output	1	The user side receives the indication of last byte
rx_mac_error	output	1	The user side receives the indication of error frame
rx_statistics_valid	output	1	The user side receives the indication of valid statistics
rx_statistics_vector	output	27	The user side receives statistics
tx_mac_clk	output	1	The user side transmits clock
tx mac valid	input	1	The user side transmits enable
tx_mac_data	input	8	The user side transmits data
tx_mac_last	input	1	The user side transmits the indication of last byte
tx_mac_error	input	1	The user side transmits the indication of error frame
		1	The user side transmits a handshake signal. It indicates
tx_mac_ready	output		that tx_mac_data is received with a value of 1.
tx_collision	output	1	The user side transmits the line collision indicator signal.
			When the value is 1, it indicates that there is a line collision
			in this transmission and the user needs to end this
			transmission immediately. This signal is valid only in half
			duplex
tx_retransmit	output	1	The user side will transmit a retransmission indicator
			signal, which appears with tx_collision at the same time,
			and the value of 1 means that this frame needs to be
		-	retransmitted. This signal is valid only in half duplex
tx_statistics_valid	output	1	The user side transmits the indication of valid statistics
tx_statistics_vector	output	29	The user side transmits statistics
IP Configure	1	I	
rx_fcs_fwd_ena	input	1	Receiving FCS Forward function:
			1:Enable receiving FCS Forward function
			0:Disable receiving FCS Forward function
rx_jumbo_ena	input	1	Receiving Jumbo function:
			1:Enable receiving Jumbo function
			0:Disable receiving Jumbo function
rx_pause_req	output	1	Receiving the signal of pause frame
rx_pause_val	output	16	C
tx_fcs_fwd_ena	input	1	Transmitting FCS Forward Function
			1:Enable receiving FCS Forward function
			0:Disable receiving FCS Forward function
tx_ifg_delay_ena	input	1	Transmitting the minimum IFG configuration enable:
			1: Enable the minimum IFG configuration
			0: Disable minimum IFG configuration, and the default
			minimum IFG is 12 bytes
tx_ifg_delay	input	8	Transmitting minimum IFG:
			When tx_ifg_delay_ena is 1, the minimum IFG transmitted
			by IP is determined by tx_ifg_delay. When tx_ifg_delay is
			less than 8, the minimum IFG is 8; When tx_ifg_delay is
			greater than or equal to 8, the minimum IFG is set by the
			user.
			When tx_ifg_delay_ena is 0, this setting is invalid
tx_pause_req	input	1	Transmitting enable signal of pause frame
tx_pause_val	input	16	Transmitting the parameter field of pause frame, which
		10	means the counterpart needs to pause time.
tx_pause_source_add	input	48	Transmitting the source address of pause frame.
r Managament Interface			
Management Interface           clk         input         1         Management module clock input			
	input	1	Management module clock input
miim_phyad	input	5	PHY address

Signal	I/O	Data Width	Description
miim_regad	input	5	Address
miim_wrdata	input	16	Write data
miim_wren	input	1	Write enable
miim_rden	input	1	Read enable
miim_rddata	output	16	Read data
miim_rddata_valid	output	1	Read data valid
miim_busy	output	1	MIIM interface status indicator: 1: Reading/Writing 0: Idle
mdc	output	1	MDC clock
mdio_in	input	1	MDIO input
mdio_out	output	1	MDIO output
mdio_oen	output	1	MDIO output enable

# **6**Parameter Configuration

Users are required to configure the various static and timing parameters of the Gowin Triple Speed Ethernet MAC according to the design requirements. Refer to Table 6-1.

Name	Description	Options
Interface	Interface Type	RGMII,GMII,MII,GMII/MII
RGMII Input Delay	When using the RGMII interface, this option is used to adjust the Delay value of the input data RXD IODELAY. If the value adds 1 each time, it means the RXD IODELAY in the FPGA increases 0.025ns delay; If the value reduces 1 each time, it means the RXD IODELAY in the FPGA decreases 0.025ns delay. When the input clock and data are aligned along, this option is recommended to be set to 100, that is, RXD IODELAY in the FPGA is set to 2.5ns delay, at which time RXCLK samples RXD correctly.	User input, range from 0 to 127.
MIIM Clock Divider	CLK inputs clock frequency value then outputs to MDC, as the management interface clock output. If this option is less than 2, the actual frequency value is 2; If this option is greater than or equal to 2, the actual frequency value is the input value.	User input, range from 0~255

Table 6-1 Static and Timi	ng Parameters of the Gowin	Triple Speed Ethernet MAC
---------------------------	----------------------------	---------------------------

## **7**_{Reference Design}

See the Triple Speed Ethernet MAC design reference for more information.

# 8 Interface Configuration

Users can invoke and configure Gowin Triple Speed Etherent MAC IP through the IP Core Generater tool in the IDE. Taking the RGMII interface pattern as an example, this section introduces the main configuration interface, the configuration process, and the implications of each configuration option.

1. Open IP Core Generater

After the user establishing the project, click on the Tools tab in the upper left corner, and pull down and click on the IP Core Generater option to open GOWIN's IP Core Generater tool and select Triple Speed Etherent MAC, as shown in Figure8-1.

Figure8-1 IP Core Generation Tool

Target Device: GW2A-LV55PG484C8/17			
Name			
🖶 🛅 Hard Module	Triple Speed Ethernet MAC		
😥 🚞 Block Memory			
E- CLOCK			
🕀 🚞 DSP	Information		
🕀 🚈 IBC	momation		
🕀 🛅 SPMI	The Trick Court Phone NAC		
😥 🚞 User Flash	Type: Triple Speed Ethernet MAC		
😑 🚞 Soft IP Core	Vendor: GOWIN Semiconductor		
🔅 🚞 CAN	Summary: The Gowin Triple Speed Ethernet MAC IP is a fully verified soft IP core which can implement Ethernet MAC layer function and		
DDRx	provide RGMII/GMII/MII interface to connected to PHY IC. The IP implements MAC layer protocol.		
🕀 🚞 FIFO			
🖶 🚞 13C			
🕀 🚞 MIPI			
🖶 🚞 Math			
Microprocessor System			
🛞 🚞 PSRAM			
RAM Based Shift Register			
SDRAM Controller			
E Triple Speed Ethernet MAC			
👬 Triple Speed Ethernet MAC			
	Copyright(C) 2014-2019 GOWIN Semiconductor Corporation. All Rights Reserved.		

2. Triple Speed Etherent MAC port interface

On the left side of the configuration interface is the interface diagram of Triple Speed Etherent MAC IP, and on the right side are IP options, as shown in Figure8-2.

	IP Customization
Triple Speed Ethernet MAC	File
qrx1/xs1211         qrx2,xs1211           qrx2,xs1211         qrx2,xs1211	Create In:
trynscynia         nrynscylaria           trynscynia         nrynscylaria           trynscynia         nrynscynia           trynscynia         nrynscynia	Interface RGMII ♦ RGMII Input Delay 100 ♦ MIIM Clock Divider 20 ♦
K1(1):Ubit (x):         U_1(1):(x):(x):(x):(x):(x):(x):(x):(x):(x):(x	Generation Config  Disable I/O Insertion
😥 Help	

#### Figure8-2 Triple Speed Ethernet MAC IP Configuration Interface

3. Open the Help document

Users can click the Help button in the lower left corner of Figure8-2 to see the simple English introduction of various options in the configuration interface, so as to facilitate users to quickly complete the configuration of IP core, as shown in Figure8-3.

Figure8-3 Triple Speed Ethernet MAC IP Help

#### **Triple Speed Ethernet MAC**

Information	
Type:	Triple Speed Ethernet MAC
Vendor:	GOWIN Semiconductor
Summary:	The Gowin Triple Speed Ethernet MAC IP is a fully verified soft IP core which can implement Ethernet MAC layer function and provide RGMII/GMII/MII interface to connected to PHY IC. The IP implements MAC layer protocol.

Options

Option	Description
Interface	MAC Interface connected to PHY. Providing RGMII/GMII/MII Interface.
RGMII Input Delay	When use RGMII Interface, the option is set to adjust the internal data delay. The range is 0 ~ 127. When the input clock and data are edge alignment, the option is suggested 100.
MIIM Clock Divider	The mdc divider value from pin clk. The range is 0 $\sim$ 255. If the option is set smaller than 2, the actual divider is 2. If the option is set equal or bigger than 2, the actual divider is the value that user sets.

