

Gowin SPDIF Receiver IP

用户指南

IPUG548-1.11,2021-04-22

版权所有 © 2021 广东高云半导体科技股份有限公司

GO₩INā云, Gowin, 高云均为广东高云半导体科技股份有限公司注册商标, 本手册中提到的 其他任何商标, 其所有权利属其拥有者所有。未经本公司书面许可, 任何单位和个人都不得 擅自摘抄、复制、翻译本文档内容的部分或全部, 并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2019/05/10	1.0	初始版本。
2020/07/23	1.1	增加 SPDIF 恢复时钟。
2021/04/22	1.11	更新 2.4 节信号定义。

目录

月	录	İ
图	 目录	i i
	目录	
•	关于本手册	
1	× · · · · · · · · · · · · · · · · · · ·	
	1.1 手册内容	
	1.2 相关文档	
	1.3 术语、缩略语	
	1.4 技术支持与反馈	
2	功能描述	2
	2.1 概述	2
	2.1.1 特性	2
	2.1.2 性能参考	2
	2.2 系统框图	3
	2.3 工作原理	3
	2.3.1 实现框图	
	2.3.2 SPDIF 帧结构	
	2.3.3 BMC 编码	
	2.3.4 控制器工作过程	
	2.4 信号定义	
	2.4.1 用户逻辑侧信号	
	2.4.2 接收侧信号	
	2.5 参数介绍	
	2.6 接口时序	
2	应用举例	
၁		
	3.1 概述	
	3.2 应用框图	
	3.3 GUI 调用	7

图目录

图 2-1 系统框图	3
图 2-2 实现框图	
图 2-3 帧格式	
图 2-4 子帧格式	
图 2-5 用户逻辑时序	
图 3-1 应用框图	
图 3-2 工程界面	
图 3-3 IP Core Generator 界面	
图 3-4 例化 SPDIF_RX_Top	
El 0 1 1/1/10 01 211 -107-106	0

表目录

表 1-1 术语、缩略语	1
表 2-1 性能参考	
表 2-2 用户逻辑侧信号	
表 2-3 接收侧信号	6
表 2-4 GUI 参数	

IPUG548-1.11 iii

1 关于本手册 1.1 手册内容

1 关于本手册

1.1 手册内容

Gowin SPDIF Receiver IP 用户手册主要包括功能特征、整体框图、工作原理、信号定义、参数介绍、接口时序、GUI 调用等,旨在帮助用户快速了解高云半导体 SPDIF Receiver IP 的产品特性和使用方法,加速用户产品开发。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com.cn</u> 可以下载、查看以下相关文档:

- <u>DS100</u>, GW1N 系列 FPGA 产品数据手册
- DS226, GW2AR 系列 FPGA 产品数据手册
- DS102, GW2A 系列 FPGA 产品数据手册

1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
FPGA	Field Programmable Gate Array	现场可编程门阵列
SPDIF	Sony/Philips Digital Interface Format	索尼/飞利浦数据接口格式

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com.cn

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

IPUG548-1.11 1(9)

2 功能描述 2.1 概述

2 功能描述

2.1 概述

SPDIF(Sony/Philips Digital Interface Format)是一种数字音频传输接口,普遍使用光纤和同轴线输出,将音频信号输出到解码器上,能保持高保真度的输出结果,广泛应用在 DTS(Digital Theatre System,数字化影院系统)。

为了更好地服务 FPGA 用户,降低用户的系统开发难度,提高产品开发速度,设计一款低功耗通用 SPDIF Receiver 控制器,实现 SPDIF 接口协议及 BMC 编码等功能。

SPDIF Receiver 控制器通过软件界面调用后,可通过 Gowin 软件综合、布局布线适用到高云所有 FPGA 产品。

2.1.1 特性

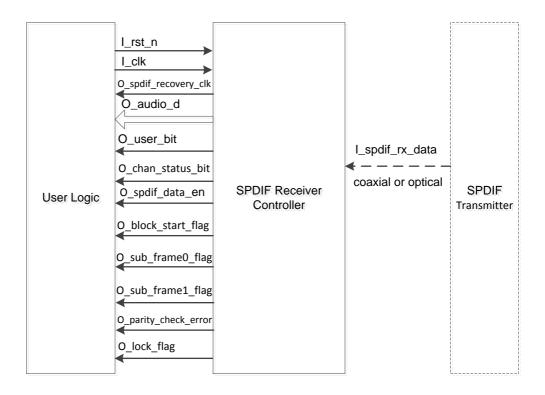
- 控制器输入工作时钟速率不小于 512Fs (FS 即音频采样速率);
- 通过高速时钟异步采样全数据处理恢复语音数据和时钟;
- SPDIF 恢复时钟为控制器输入工作时钟的 1/8:
- 支持 8KHz~192KHz 采样速率;
- 支持 16bit~24bit 位宽范围取值;
- 支持 IEC60958 (SPDIF) 和 AES3 标准的 PCM 数据传输;
- 锁定时间不大于 1Fs;
- 低功耗:
- 完全可综合。

2.1.2 性能参考

Gowin SPDIF Receiver IP 的工作频率取决于 IP 在所选芯片中支持的最大工作频率,设计语言为 Verilog, 性能测试参考如下所示:

表 2-1 性能参考

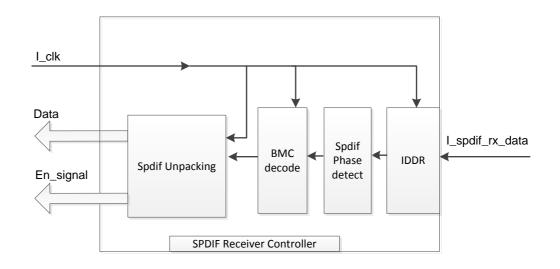
芯片型号	编程语言	LUT4 资源	最大速度
GW1N-LV4LQ144C6/I5	Verilog	330	≥90MHz
GW2A-LV18LQ144C8/I7	Verilog	318	≥150MHz


IPUG548-1.11 2(9)

2 功能描述 2.2 系统框图

2.2 系统框图

SPDIF Receiver 控制器用户逻辑侧主要包括数据、控制、时钟、复位等信号,发送端口侧仅有一路输入数据。

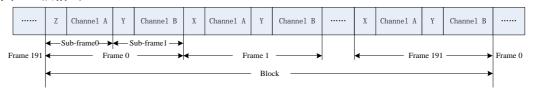

图 2-1 系统框图

2.3 工作原理

2.3.1 实现框图

图 2-2 实现框图

IPUG548-1.11 3(9)


2 功能描述 2.3 工作原理

整个 SPDIF Receiver 控制器包括 Spdif Unpacking、BMC decode、Spdif Phase detect 、IDDR 等模块。

- Spdif Unpacking: 对接收的 spdif 数据进行拆包,并发送到用户端口;
- BMC decode:对 spdif 传输过来的数据进行解码;
- Spdif Phase detect:对 spdif 传输过来的数据进行相位检测;
- IDDR: 实现 1:2 串并转换。

2.3.2 SPDIF 帧结构

图 2-3 帧格式

SPDIF 块由 192 个帧组成,每个帧由 2 个子帧组成,分为 Channel A 与 Channel B 两个声道,分别对应左右声道。子帧数据长度为 32 bit,包含帧头 (Preamble)、辅助数据(Aux. Data)、音频数据(Audio Data)以及四个位的信息与检查码。一个子帧为 4 Bytes,而一个 Frame 为 8 Bytes,而一个 Block 为 192 x 8 = 1536 Bytes。

图 2-4 子帧格式

0 3	4 7	8		27	28	29	30	31	
Sync preamble	Auxiliary	LSB	Audio sample word	MSB	V	U	O	Р	

1. 帧头(Sync Preamble)

主要有 X、Y、Z 三种组态,分别表示该子帧为 Channel 1、Channel 2、Block 起始。

2. 辅助数据(Auxiliary)

目前比较常见的用途是当音频数据超过 20bit 取样时,这四个 bit 用来储存多出的取样 bit,比如说当要传送 24bit 取样的数据时,用来存放末四个 bit 的音频数据。

3. 音频数据(Audio sample word)

存放实际的取样数据,长度为 20 bit,以 LSB 优先的方式传送,当取样低于 20 bit 时,没有用到的 LSB bits 要设定为零。

4. 有效标识(Validity bit)

此位用来标识子帧内的数据是不是正确,如果设定为 0,代表此子帧内的数据是正确可被接收,反之如果此 bit 为 1,则代表接收端应该忽略此子帧。

5. 用户位(User bit)

此位为用户自行定义位,每组 Sample 传送一位,直到 192 组 Sample 传完后组成 192 位的信息,两声道各自有一组 192 位的用户信息。

6. 信道状态位(Channel Status bit)

IPUG548-1.11 4(9)

2 功能描述 2.4 信号定义

此位与用户位一样,每组 Sample 传送一位,最后组成两声道各自一组 192 位的信道状态信息(Channel Status)。这个 192 位信道状态信息分为 专业(Professional)与一般家用(Consumer)两种不同的结构,以第一个位决定,设为 1 时为 Professional 模式,设为 0 时为 Consumer 模式。

7. 同位检查位(Parity bit)

同位检查是用来判别是否有奇数个位发生错误,是一种简便错误检查方法,使用偶位同位检查(Even Parity Check)。

2.3.3 BMC 编码

双相符号编码(Biphase Mark Code),简称 BMC,属于一种相位调制 (phase modulation)的编码方法,是将时钟信号和数据信号混合在一起传输的编码方法。

其原理是使用一个两倍于传输位率(bit Rate)的时钟频率作为基准,把原本一位数据拆成两部分,当数据为 1 的时,在其时钟周期内转变一次电位 (0->1 或 1->0)让数据变成两个不同电位的数据,变成 10 或 01,而当数据为 0 时则不转变电位,变成 11 或 00。同时每一个位开头的电平与前一个位结尾电平要不同,以便接收端判别每一个位的边界。

2.3.4 控制器工作过程

SPDIF Receiver 控制器工作机制如下所述:

- 控制器进入工作状态前,用户逻辑通过发送复位信号来初始化内部寄存器及状态机等;
 - 2. 控制器会在输入时钟下对从 IDDR 接收的数据通过检测 10 或 01 跳 边沿信息来进行定时恢复:
 - 3. 对相位检测模块处理后的 spdif 数据做 BMC 解码;
 - 4. 按照 SPDIF 协议进行协议解析,并对数据做校验处理:
 - 5. 把音频数据、User bit、Validity bit、Channel status bit 等数据及指示信号发送到用户接口。

2.4 信号定义

2.4.1 用户逻辑侧信号

表 2-2 用户逻辑侧信号

序号	信号名称	方向	描述	备注
1	I_rst_n	I	复位	所有信号输
2	I_clk	I	时钟	入输出方向 均以控制器
3	O_spdif_recovery_clk	0	SPDIF 恢复时钟	为参考
4	O_audio_d	0	音频数据	
5	O_user_bit	0	User bit 位数据	
6	O_chan_status_bit	0	Channel Status Bit 位数据	
7	O_spdif_data_en	0	数据有效信号	
8	O_sub_frame0_flag	0	Sub Frame0 起始标志	
9	O_sub_frame1_flag	0	Sub Frame1 起始标志	

IPUG548-1.11 5(9)

2 功能描述 2.5 参数介绍

序号	信号名称	方向	描述	备注
10	O_block_start_flag	0	Block 起始标志	
11	O_parity_check_error	0	校验错误标识(高电平指示当前子帧 有误码)	
12	O_lock_flag	0	锁定标识	

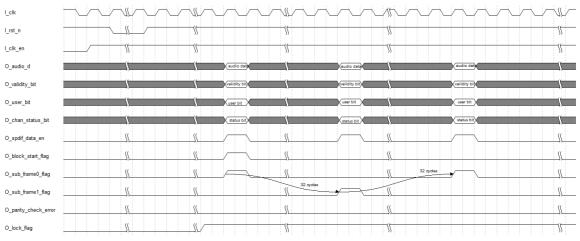
2.4.2 接收侧信号

表 2-3 接收侧信号

序号	信号名称	方向	描述	备注
1	I_spdif_rx_data	I	Spdif 传输通道数据	所有信号输入输出方向均以控制 器为参考

2.5 参数介绍

Gowin SPDIF Receiver 控制器 GUI 参数如下所示。


表 2-4 GUI 参数

序号	参数名称	允许范围	默认值	描述
1	SPDIF_DATA_WIDTH	16~24	24	音频数据输入数据宽度

2.6 接口时序

用户逻辑时序如下所示。

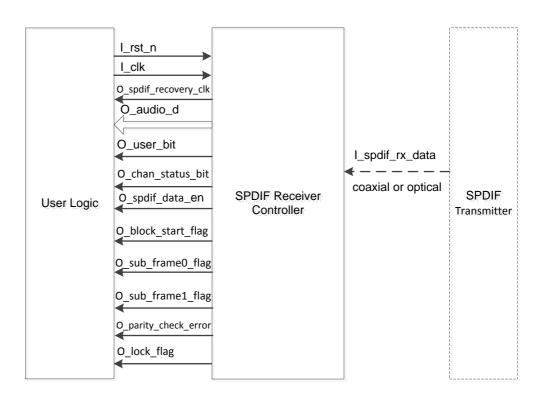
图 2-5 用户逻辑时序

注!

- 时钟使能信号使能后,需首先复位一次控制器;
- 所有输入和输出信息均与时钟上升沿对齐;
- 所有数据使能和标识信号都为一个时钟周期,且数据和数据使能对齐输出;
- O_spdif_recovery_clk 时钟为输入工作时钟的 1/8。

IPUG548-1.11 6(9)

3 应用举例 3.1 概述

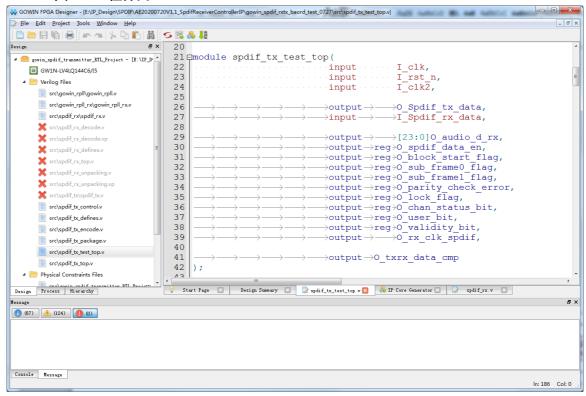

3 应用举例

3.1 概述

本章主要介绍如何通过 GUI 界面设置参数、生成可用 SPDIF Receiver 控制器 Module。

3.2 应用框图

图 3-1 应用框图


3.3 GUI 调用

1. 启动 Gowin 云源软件后,打开工程,如图 3-2 所示:

IPUG548-1.11 7(9)

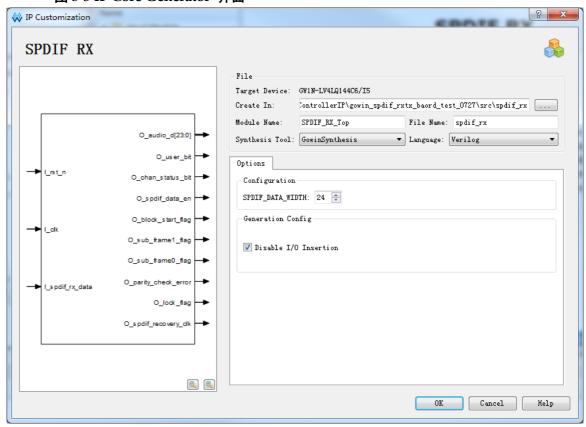
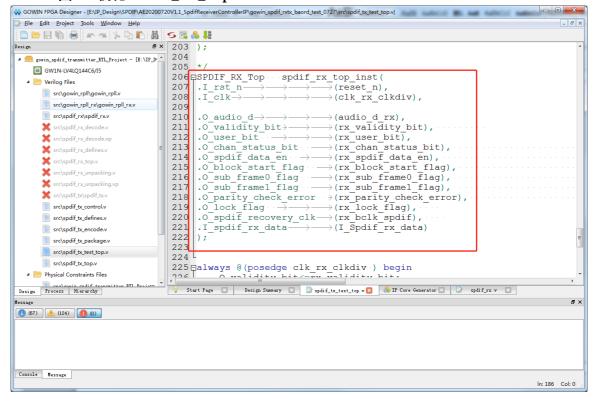

3 应用举例 3.3GUI 调用

图 3-2 工程界面

2. 在 Tools 菜单下点击"IP Core Generator",如图 3-3 所示。调用 SPDIF RX,参数默认即可,点击"OK"后生成"SPDIF RX Top Module"。

图 3-3 IP Core Generator 界面



IPUG548-1.11 8(9)

3 应用举例 3.3GUI 调用

3. 在用户程序中例化 "SPDIF_RX_Top", 如图 3-4 所示。

图 3-4 例化 SPDIF_RX_Top

IPUG548-1.11 9(9)

