

Gowin PCI to Ethernet IP **用户指南**

IPUG754-1.0, 10/15/2020

版权所有© 2020 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任 何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体 概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何 明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知 识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准 确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利, 恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2020/10/15	1.0	初始版本。

目录

目	求…		
图	目录	i	
表	目录	ii	l
1	关于	本手册1	
	1.1	目的1	
	1.2	相关文档1	
	1.3	术语、缩略语 1	
	1.4	技术支持与反馈2	
2	概述		
	2.1	主要功能	
	2.2	工作频率	
	2.3	资源利用	
-	TL AN		
3	切胞	猫坯5)
3	 り胞 3.1	猫还5 系统框图	
3	功配 3.1 3.2	抽还5 系统框图	
3	功能 3.1 3.2 3.3	抽还	
3	功配 3.1 3.2 3.3 3.4	抽还	
3	功能 3.1 3.2 3.3 3.4 接口	抽还	
3	功能 3.1 3.2 3.3 3.4 接口 4.1	 描还	
3	功能 3.1 3.2 3.3 3.4 接口 4.1 4.2	 描还	
3 4 5	JIE 3.1 3.2 3.3 3.4 4.1 4.2 界	 描还	
3 4 5 6	JU 3.1 3.2 3.3 3.4 4.1 4.2 面件	 抽还 系统框图 功能框图说明 寄存器信息 寄存器信息 存 操作步骤 7 列表 9 PIN 引脚图 9 引脚说明 10 配置 14 交付 17 	
3 4 5 6	JIE 3.1 3.2 3.3 3.4 4.1 4.2 五件 6.1	 猫还	
3 4 5 6	功 3.1 3.2 3.3 3.4 4.1 4.2 面件 6.1 6.2	猫还 5 系统框图 5 功能框图说明 5 寄存器信息 6 操作步骤 6 列表 9 列表 9 이成明 10 配置 14 交付 17 文档 17 设计源代码 17	

IPUG754-1.0

目录

图目录

图 3-1 PCI to Ethernet 系统框图	5
图 3-2 PCI to Ethernet 功能框图	6
图 4-1 PCI to Ethernet 引脚图	9
图 5-1 打开 IP Core Generator	14
图 5-2 打开 PCI to Ethernet IP 核	15
图 5-3 PCI to Ethernet IP 核接口示意图	15
图 5-4 Help 文档	16
图 5-5 基本信息配置界面	16

表目录

表 1-1 术语释义	1
表 2-1 Gowin PCI to Ethernet IP 概述	3
表 2-2 资源使用情况	4
表 3-1 寄存器信息	6
表 4-1 引脚说明	10
表 6-1 文档列表	17
表 6-2 PCI to Ethernet 设计源代码列表	17

1 关于本手册

1.1 目的

Gowin PCI to Ethernet IP 主要内容包括特征简介、功能描述、接口列表 以及参数配置,旨在帮助用户快速了解 Gowin PCI to Ethernet IP 的产品特 性及使用方法。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com.cn</u>可以下载、查看以下相关文档:

- <u>DS100</u>, GW1N 系列 FPGA 产品数据手册
- <u>DS102</u>, GW2A 系列 FPGA 产品数据手册
- <u>DS117</u>, GW1NR 系列 FPGA 产品数据手册
- <u>DS226</u>, GW2AR 系列 FPGA 产品数据手册
- <u>DS821</u>, GW1NS 系列 FPGA 产品数据手册
- <u>DS841</u>, GW1NZ 系列 FPGA 产品数据手册
- <u>DS861</u>, GW1NSR 系列 FPGA 产品数据手册
- <u>DS871</u>, GW1NSE 系列安全 FPGA 产品数据手册
- <u>DS881</u>, GW1NSER 系列安全 FPGA 产品数据手册
- <u>DS891</u>, GW1NRF 系列蓝牙 FPGA 产品数据手册
- <u>DS961</u>, GW2ANR 系列 FPGA 产品数据手册
- <u>DS971</u>, GW2AN 系列 FPGA 产品数据手册
- <u>SUG100</u>, Gowin 云源软件用户指南

1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语释义

术语、缩略语	全称	含义
IP	Intellectual Property	知识产权

术语、缩略语	全称	含义
LUT	Look-up Table	查找表
PCI	Peripheral Component Interconnect	外设器件互连标准
Ethernet	Ethernet	以太网

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网站: <u>www.gowinsemi.com.cn</u>

E-mail: <u>support@gowinsemi.com</u>

Tel: +86 755 8262 0391

Gowin PCI to Ethernet IP使得用户可以通过PCI总线来对Gowin Triple Speed Ethernet IP进行配置,实现了Gowin PCI Target IP和Gowin Triple Speed Ethernet IP之间的通信。

表 2-1 Gowin PCI to Ethernet IP 概述

Gowin PCI to Ethernet IP			
支持设备	All devices(其中不包含 GW1N-1/GW1N-1S/GW1NZ-1 等 1K 资源 器件)		
逻辑资源	见表 2-2		
交付文件			
设计文件	Verilog (加密)		
参考设计	Verilog		
测试平台	Verilog		
测试设计流程			
综合软件	GowinSynthesis		
应用软件	Gowin Software		

2.1 主要功能

Gowin PCI to Ethernet IP 主要功能是支持一个 PCI 设备与一个 Ethernet 设备进行通信, Ethernet 器件作为后端设备, 挂载在 PCI 的一个基区上。

2.2 工作频率

Gowin PCI Target IP 工作时钟频率为 33MHz, Gowin Triple Speed Ethernet Controller IP 工作时钟频率为 125MHz,所以两个 IP 工作时钟为异步时钟,PCI to Ethernet IP 会进行跨时钟域的处理。

2.3 资源利用

Gowin PCI to Ethernet IP 采用 Verilog 语言来进行设计,表 2-2 给出了 基于 GW2A55 器件的资源利用概述,关于其它器件的资源利用请参阅相关 的后期发布信息。

表 2-2 资源使用情况

LUTs	REGs	Block Rams	Device Series	Speed Level
921	668	4	GW2A-55	-8

3.1 系统框图

如图 3-1 所示, PCI to Ethernet 介于 PCI Target 的 Local 端接口与 Ethernet 前端接口之间,实现 PCI 到 Ethernet 的接口转换,进而实现通信。

3.2 功能框图说明

Gowin PCI to Ethernet IP 由五个模块构成,如图 3-2 所示:

- 发送缓存模块功能为缓存由 PCI 发送的数据;发送缓存的可以容纳一个 最大长度的以太网帧,即可容纳一个长度为 1518 字节的以太网帧;
- 发送接口转换模块功能为将 PCI 数据格式,转换为 Ethernet IP 的 Tx MAC 接口所需要的数据格式,并生成相关 Tx MAC 接口的控制信号;
- 接收缓存模块功能为缓存由 Ethernet 发送的数据;接收缓存可以容纳一个最大长度的以太网帧,即可容纳一个长度为 1518 字节的以太网帧;
- 接收接口转换模块功能为将 Ethernet IP 的 Rx MAC 接口的数据格式,转 换为 PCI 所需的数据格式,并生成相关 PCI Local 接口的控制信号;

● MIIM 接口转换模块功能实现 PCI Local 接口和 Ethernet IP 的 MIIM 接口 的相互转换,由于数据量较小,所以不需要缓存。

图 3-2 PCI to Ethernet 功能框图

3.3 寄存器信息

如表 3-1 所示,为 PCI to Ethernet 的寄存器组。由于寄存器的最大地址为 0x1014,所以 PCI Target IP 的基地址寄存器至少要设置为 128KB。如表 所示,为各个寄存器地址映射的描述

表 3-1 寄存器信息

偏移/范围	寄存器名称	访问限制	功能描述
0x0000-0x0fff	MIIM Configure	无	MIIM 配置寄存器。 访问该寄存器时,tg_addr 的部分地址,会映射为以太 网 MIIM 接口中的 phyad 和 regad,方式如下: 11:7 => phyad (默认 0x0) 6:2 => regad (默认 0x0) 向该段地址发起读写数据 请求时,数据映射方式如 下: 如果是写传输,PCI 发送的 数据会映射在 MIIM 接口中 的 miim_wrdata[15:0]; 如果是读传输,PCI 会读取 MIIM 接口中的 miim_rddata[15:0]上的数 据。
0x1000	Speed Configure	只写	以太网速率及双工配置寄 存器。通过写入数据,可以 配置以太网的工作速率

偏移/范围	寄存器名称	访问限制	功能描述
			(10M/100M/1000M)和
			双工模式(半双工或全双
			工)。
			0 => speedis1000(默认
			0x0)
			1 => speedis10(默认
			0x0)
			上述两位[1:0],有以下几种
			组合情况:
			00 =>100M
			01 = >1000 M
			2 => duplex_status
			该位为0时表示全双丁.
			为1时表示半双工。
0x1004	Tx Frame Length	无	发送帧长度寄存器。
	5	70	在 PCI 向以太网发送数据
			之前,要先向该寄存器写入
			将要发送的以太网帧的总
			字节数,之后可以向发送缓
			存寄存器中发送以太网数
			据。
0x1008	Tx State	只读	发送状态寄存器。
			通过读取该寄存器中的数
			据,可以得知以太网数据的
			发送情况。
			读数据为0时表示以太网
			数据未发送完成
			读数据为1时表示以太网
			数据已发送完成
0x100c	Tx Data	只写	发送数据寄存器。
			当 PCI 向该寄存器发送数
			据时,数据会进入发送缓存
			模块,等到一帧数据全部发
			送完成,会生成 Tx MAC
			接口时序,完成数据的传
0.4040	Du Franci d'		揃。
0x1010	Rx Frame Length	只读	接收帧长度寄存器。
			PCI 往接收以太网数据之
			削 , 需要 医 取 方 的 不 的 的 的 的 的 的 的
			<u> </u>
			步行中的以太网顿的子节 新 胡提志取到的新提 可
			致, സ / / / / / / / / / / / / / / / / / /
			以伏止 FUI 而安进仃 採 佐 的 か 粉
0x1014	Ry Data	口法	1F 时 (八) 奴。 按 齿 粉 垠 安 方 명
081014	IN Dala	只误	按 收 叙 掂 句 仔 奋。 当 □ C I □ 法 齿 些 → 上 占 止
			コ Гし 以 以 的 ル 氏 切 円 氏 安 友 界 时 伊 可 可 法 面 拉 b
			可行 前时, 使 可 以 误 収 按 收 婬 左 由 的 以 大 网 粉 捉
			次行了III以入[m]双顶。

3.4 操作步骤

用户首先要确定 Ethernet 是挂载在 PCI 的哪一基区,需要注意的是, PCI Target 的 tg_bar_hit 信号可以是 1 至 6 位宽,而 PCI to Ethernet 的 tg_bar_hit 信号是 1 位宽,所以使用时需要将 PCI Target 的 tg_bar_hit 中的 某一位连接在 PCI to Ethernet 的 tg_bar_hit 上,这样可以满足 PCI Target 对不同基区的操作。

Gowin PCI to Ethernet IP 实际操作流程如下所述:

- 1. 配置 Speed Configure,确定以太网的工作速率与双工模式;
- 2. 配置 MIIM Configure,确定 PHY 芯片的属性与工作模式;
- 3. 发送接收数据。
 - 如果要发送数据,要先向 Tx Frame Length 寄存器中写入一个以太 网帧的长度(以字节为单位),接着可以向 Tx Data 中发送数据。
 - 如果要接收数据,要先从 **Rx** Frame Length 寄存器中读取一个以太 网帧的长度(以字节为单位),接着可以从 **Rx** Data 中读取数据。

关于 Gowin PCI Target IP 与 Gowin Triple Speed Ethernet IP 的使用指 南、相关时序等信息,可参考 IPUG904, Gowin PCI Target IP 用户指南和 IPUG538, Gowin Triple Speed Ethernet IP 用户指南。

4.1 PIN 引脚图

4.2 引脚说明

表 4-1 引脚说明

引脚	方向	描述	备注
时钟和复位	所有信号方向皆以 PCI		
pci_clk	输入	PCI 输入时钟。	to Ethernet IP 为参考
pci_reset_l	输入	异步复位信号,低电平有 效。	尽。
gtx_clk	输入	125M 时钟输入,当 Ethernet IP 使用 RGMII 或 GMII 接口时,需输入 125MHz 时钟。	
PCI Local 接口			
tg_addr[31:0]	输入	PCI Target 的地址信号。	
tg_data_out[31:0]	输入	PCI Target 写操作时的数 据输出信号。	
tg_data_in[31:0]	输出	PCI Target 读操作时的数 据输入信号。	
tg_cbe_l[3:0]	输入	PCI Target 字节使能信号, 低电平有效。	
tg_ready_l	输出	该信号有效时,代表 PCI to Ethernet 做好了接收或发送数据的准备,低电平有效。	
tg_write_I	输入	PCI Target 写传输指示信 号,低电平有效。	
tg_read_l	输入	PCI Target 读传输指示信 号,低电平有效。	
tg_stop_l	输出	数据传输停止信号,低电平 有效。	
tg_abort_I	输出	数据传输放弃信号,低电平 有效。	
tg_cmd_o[3:0]	输入	PCI Target 传输命令信号。	
tg_bar_hit	输入	单比特基区选择信号。该信 号来自 PCI Target 中 tg_bar_hit[5:0]信号中的某 一位,用户可自定义的选 择,可以让 Ethernet IP 挂 载在所需要的基区上。	
tg_access	输入	该信号有效时,表示 PCI Target 正在对 Local 接口进 行访问。	
tg_value	输入	PCI Target 在进行写传输	

引脚	方向	描述	备注
		时,该信号有效,表示 tg_data_out[31:0]上的数 据有效;进行读传输时,该 信号有效表明 tg_data_in[31:0]上的数据 有效。	
Ethernet IP 接口			
speedis1000	输出	以太网速率选择信号,当 Ethernet IP 工作在 RGMII 或 GMII/MII 模式时,配置 IP 工作在 1000M 速率或 10M/100M 速率: 1:1000M 0:10M/100M	
speedis10	输出	以太网速率选择信号,当 IP 工作在 RGMII 模式且 speedis1000 为 0 时,配 置 IP 工作在 10M 速率 或 100M 速 率: 1:10M 0:100M 注! 当 speedis1000 为 1 时, 此配置管脚被忽略	
duplex_status	输出	以太网双工模式配置信号, 当 IP 工作在 RGMII、MII 或 GMII/MII 模式时,配置 IP 工作双工模式: 1:半双工 0:全双工	
rx_mac_clk	输入	用户侧接收时钟	
rx_mac_valid	输入	用户侧接收使能	
rx_mac_data	输入	用户侧接收数据	
rx_mac_last	输入	用户侧接收最后字节指示	
rx_mac_error	输入	用户侧接收错误帧指示	
rx_pause_req	输入	接收 pause 帧指示信号	
rx_pause_val	输入	接收 pause 帧 parameter 字段,代表本方 需要暂停时间	
rx_statistics_valid	输入	用户侧接收统计有效指示	
rx_statistics_vector	输入	用户侧接收统计信息	
tx_mac_clk	输出	用户侧发送时钟	
tx_mac_valid	输出	用户侧发送使能	

引脚	方向	描述	备注
tx_mac_data	输出	用户侧发送数据	
tx_mac_last	输出	用户侧发送最后字节指示	
tx_mac_error	输出	用户侧发送错误帧指示	
tx_mac_ready	输出	用户侧发送握手信号,为 1 表示 tx_mac_data 被接 收	
tx_collision	输入	用户侧发送线路冲突指示 信号,为 1 表示此次发送 出现线路 冲突,用户需立 刻结束此次发送。此信号仅 在半双工时有效	
tx_retransmit	输入	用户侧发送重发指示信号, 此信号与 tx_collision 同 时出现,为 1 表示需要重 发此帧。此信号仅在半双工 时有效	
rx_fcs_fwd_ena	输出	接收 FCS Forward 功能: 1: 使能接收 FCS Forward 功能 0: 禁止接收 FCS Forward 功能	
rx_jumbo_ena	输出	接收 Jumbo 功能: 1:使能接收 Jumbo 功能 0:禁止接收 Jumbo 功能	
tx_pause_req	输出	发送 pause 帧使能信号	
tx_pause_val	输出	发送 pause 帧 parameter 字段,代表要求 对方暂停时间	
tx_pause_source_addr	输出	发送 pause 帧源地址	
tx_ifg_delay_ena	输出	发送最小 IFG 配置使能: 1:使能最小 IFG 配置 0:禁止最小 IFG 配置,默 认最小 IFG 为 12 字节	
tx_ifg_delay	输出	发送最小 IFG: 当 tx_ifg_delay_ena 为 1 时, IP 发送最小 IFG 由 tx_ifg_delay 决定; 当 tx_ifg_delay 小于 8 时,最小 IFG 为 8; 当 tx_ifg_delay 大于等于 8 时,最小 IFG 为用户设 置值; 当 tx ifg delay ena 为 0	

引脚	方向	描述	备注
		时,此设置无效。	
tx_fcs_fwd_ena	输出	发送 FCS Forward 功能: 1: 使能发送 FCS Forward 功能 0: 禁止发送 FCS Forward 功能	
tx_statistics_valid	输出	用户侧发送统计有效指示	
tx_statistics_vector	输出	用户侧发送统计信息	
Clk	输入	Management 模块时钟输入	
miim_phyad	输出	PHY 地址	
miim_regad	输出	寄存器地址	
miim_wrdata	输出	写数据	
miim_wren	输出	写使能	
miim_rden	输出	读使能	
miim_rddata	输入	读数据	
miim_rddata_valid	输入	读数据有效	
miim_busy	输入	MIIM 接口状态指示: 1: 正在读/写 0: 空闲	

用户可以使用 IDE 中的 IP 内核生成器工具调用和配置高云 PCI to Ethernet IP。

1. 打开 IP Core Generator

用户建立工程后,单击左上角"Tools"选项卡,下拉单击"IP Core Generator"选项,即可打开 Gowin IP Core Generator,如图 5-1 所示。

图 5-1 打开 IP Core Generator

🐳 GOWIN FPGA Designer - [Design Summary]				
File Edit Project Tools Window Help				_ 8 ×
📄 🗁 拱 🎼 💡 Start Page	× 1			
Design Synplify Pro	8 ×			_
🔺 🧰 fpga_project 🔀 Gowin Analyzer Oscilloscope t.g	iprj]		General	
GW2A-LV1 Schematic Viewer		Project File:	E:\fpgaprj\pe\fpga_project\fpga_project.gprj	
IP Core Generator		Synthesis Tool:	GowinSynthesis	
Programmer				
HoorPlanner			Target Device	
Timing Constraints Editor		Part Number:	GW2A-LV18PG2565C8/I7	
🛠 Options		Series:	GW2A	
		Device:	GW2A-18	
		Package:	PBGA256S	
		Speed Grade:	C8/I7	
		Core Voltage:	LV	
Design Process Hierarchy	9	Start Page 🛛 🗵	Design Summary 🔀	
Console				8 ×
%				
Console Message				

2. 打开 PCI to Ethernet IP 核

单击 "Interface and Interconnect"选项,双击 "PCI to Ethernet",打开 PCI to Ethernet IP 核的配置界面,如图 5-2 所示。

GOWIN FPGA Designer - [IP Core Generator		
爲 File Edit Project Tools Window He	łp	_ <i>B</i> ×
🗋 🗁 🗟 🖷 🔚 🖛 🔺 🍾 🗅	🛍 🖌 🔀 🚼 🚷 👬	
Design & ×	Target Device: GW2A-LV18PG256SC8/I7	
🔺 🧰 fpga_project - [E:\fpgaprj\pe\fpga	Filter	
GW2A-LV18PG256SC8/I7		
	A Interface and Interconnect	PCI to Ethernet
	AHB Bus Arbiter	
	💑 CAN	Information
	A I2C MASTER	
	A I3C DDR eXtension	Type: PCI to Ethernet
	💑 I3C SDR 🗉	Vendor: GOWIN Semiconductor
	💑 MIPI RX	Summary
	MIPI RX Advance	Summary
	MIPI TX Advance	The Gowin PCI to Ethernet IP realizes mutual
	👶 PCI Target	communication between Gowin PCI Target IP and Gowin
	PCI to CAN	Triple Speed Ethernet MAC IP.
	SDIO Slave Controller	
	SDIO_SPI	Reference
	💑 SDIO_UART 🗸 🗸	
		Reference documents(CN) - IP reference designs and
Design Process Hierarchy	V Start Page 🔝 Design Sumr	nary 🔝 🚷 IP Core Generator 🗵
Console		5 ×
96		
Console Message		

图 5-2 打开 PCI to Ethernet IP 核

3. PCI to Ethernet IP 核端口界面 配置界面左侧为 PCI to Ethernet IP 核的接口

۹ 🔍

配置界面左侧为 PCI to Ethernet IP 核的接口示意图,如图 5-3 所示。 图 5-3 PCI to Ethernet IP 核接口示意图 ? X 🐝 IP Customization **PCI to Ethernet** General Part Number: GW2A-LV18PG256SC8/I7 GW2A-18 Device: Create In: E:\fpgaprj\pe\fpga_project\src\pci_to_ethernet ... File Name: pci_to_ethernet Module Name: PCI_to_Ethernet_Top Language: Verilog Synthesis Tool: GowinSynthesis -Options Generation Config ☑ Disable I/O Insertion

4. 打开 Help 文档

可以单击位于图 5-3 右下角的 "Help" 按钮可以查看配置界面中各个选项的简单英文介绍, 方便用户快速完成对 IP 核的配置。Help 文档选项介

OK Cancel Help

绍顺序和界面顺序一致,如图 5-4 所示。

图 5-4 Help 文档

PCI to Ethernet

Information

Type: PCI to Ethernet Vendor: GOWIN Semiconductor

Summary

The Gowin PCI to Ethernet IP realizes mutual communication between Gowin PCI Target IP and Gowin Triple Speed Ethernet MAC IP.

Reference

Reference documents(CN) - IP reference designs and user guide

Reference documents(EN) - IP reference designs and user guide

5. 配置基本信息

在配置界面的上部分是工程基本信息配置界面,本文芯片型号选择 "GW2A-18"为例,封装选择"PG256"。"Module Name"选项后面是 工程产生后顶层文件的名字,默认为"PCI_to_Ethernet_Top",用户可 自行修改。"File Name"是 IP 核文件产生的文件夹,存放 PCI to Ethernet IP 核所需文件,默认为"pci_to_ethernet",用户可自行修改路径。 "Create In"选项是 IP 核文件夹产生路径,默认为"\工程路径 \src\pci_to_ethernet",用户可自行修改路径。

图 5-5 基本信息配置界面

- (-	01	20	IC CO	
	CI	10	10	

Device:	GW2A-18	Part Number:	GW2A-LV18PG256SC8/I7	
Create In:	E:\fpgaprj\pe\fpga_project\src\pci_to_ethernet			
File Name:	pci_to_ethernet	Module Name:	PCI_to_Ethernet_Top	
Language:	Verilog 🔻	Synthesis Tool:	GowinSynthesis 🔹	

Gowin PCI to Ethernet IP 交付文件主要包含两个部分: 文档以及设计源代码。

6.1 文档

文件夹主要包含用户指南 PDF 文档。

表 6-1 文档列表

名称	描述
IPUG754, Gowin PCI to Ethernet IP 用户指南	高云 PCI to Ethernet 用户手册

6.2 设计源代码

加密代码文件夹包含 Gowin PCI to Ethernet IP 的 RTL 加密代码,供GUI 使用,以配合高云云源软件产生用户所需的 IP 核。

表 6-2 PCI to Ethernet 设计源代码列表

名称	描述	
pci_to_ethernet.v	IP 核顶层文件,给用户提供接口信息,加密。	

