GOWIN

PROGRAMMING FOR THE FUTURE

Gowin PicoRV32 IDE Software

Reference Manual

IPUG910-1.6E, 09/26/2025

Copyright © 2025 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.
dodde

GOWIN and GOWIN are trademarks of Guangdong Gowin Semiconductor Corporation
and are registered in China, the U.S. Patent and Trademark Office, and other countries. All
other words and logos identified as trademarks or service marks are the property of their
respective holders. No part of this document may be reproduced or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without the
prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied)
and is not responsible for any damage incurred to your hardware, software, data, or
property resulting from usage of the materials or intellectual property except as outlined in
the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this
document at any time without prior notice. Anyone relying on this documentation should
contact GOWINSEMI for the current documentation and errata.

Revision History

Date Version Description
01/16/2020 1.0E Initial version published.
® MCU supports GPIO of Wishbone bus interface;
® MCU supports extension AHB bus interface;
® MCU supports off-chip SPI-Flash download and startup;
03/06/2020 118 ® MCU supports the read, write and erasure SPI-Flash;
® MCU supports Hardware Stack Protection and Trap Stack
Overflow.
® MCU on-line debug function supported;
06/01/2020 1.2E ® MCU core interrupt handler function enhanced;
® MCU core instruction optimized.
07/16/2021 1.3E MCU software reference design updated.
® MCU software reference design updated.
01/29/2022 1.4E ® |IDE software options configuration optimized.
® |DE software online debug process improved.
08/18/2023 1.5E Arora V FPGA products supported.
07/18/2025 151E The Imk_of GMD '|Installat|on package in "1 GMD Software Installation
& Configuration" updated.
® GMD software version information updated.
09/26/2025 1.6E ® Software programming reference designs updated to be

compatible with GMD 2025.01.

Contents

Contents
CONTENES ... e eanae i
List Of FIQUIES ... i
LiSt Of TADIES.........oiiiiiiiiiii e i
1 GMD Software Installation & Configuration...........................ccois 1
2 Software Project Template.................cccoooiiiiiiiii e, 2
2.1 Software ProjeCt Creationi ittt 2
2.1.1 Select Project Type and Software ToolChaincccccviiieiiieii i 2
2.1.2 Select Platform and Configuration ..o 3
2.1.3 Select Toolchain and Pathcociiiiiiii s 3
2.1.4 Create Project Structure and Files ..o 4
2.2 St TNE PrOJECL ...t 5
2.2.1 Targel PrOCESSO ... i ————— 5
2.2.2 OPtMIZATIONuiiiieii e e e e e e e e e e e s e e e e e e e e e e anrarraaeaaeaaaanns 8
2.2.3 DEDUGGING ..ttt ettt b e nnree s 11
2.2.4 GNU RISC-V Cross C Compiler > INCIUAEScocueiiiiiiiiiiiiiiie e 12
2.2.5 GNU RISC-V Cross C LINKEI.....c.ciiuuiiiiiiiiiieiieie ettt 13
2.2.6 GNU RISC-V Cross Print SIZe..........ouiiiiiiiiiiiiii e 15
2.2.7 GNU RISC-V Cross Create Flash IMageccooiuiiiiiiiiiiiiciie e 16
2.3 BUIIA PrOJECES ...ttt a e e a e e e 17
2.4 DOWNIOAA PrOJECES ...ccii ittt ettt e e e e e bbb e e e e e e 17
2.5 Debug and RUN PrOJECESoiiiiiiiiiiiiiiiee ettt e e e 17
2.5.1 St DEDUG LEVEI ... 18
2.5.2 Set Flash Linker Script File........cooooiiiiie e, 19
2.5.3 Set DEDUQG MOGE.......co it a e a e e e 19
2.5.4 STt DEDUQG. .. e e e e 22
3 Reference DeSignooouiiiiiiiiiii e 24

IPUG910-1.6E i

List of Figures

List of Figures

Figure 2-1 Select Project Type and Software Toolchain ... 2

Figure 2-2 Select PIatformoeiii e 3

Figure 2-3 Select Toolchain and Path ... 4

FIQUre 2-4 Target PrOCESSOIuviiiiiiiiie ettt ettt e s e e s annneeas 6

FIgure 2-5 OptimiIZation..........ooo it 9

FIQUIE 2-6 DEDUGGING -..eeeeiutiiieeiiiiee ettt e skttt e e s bbbt e e s bbbt e e s aabn e e e s enbn e e e s annneeas 12
Figure 2-7 GNU RISC-V Cross C Compiler > INCIUAESccoiiiiiiiiiieeeii e 13
Figure 2-8 GNU RISC-V Cross C LINKETuuiiiiiiiiiiiiiiiiii ettt srtree e e e e s saatanne e e e e e s s snnnnees 14
Figure 2-9 GNU RISC-V Cross Print SiZ€cciiiiiiiiiiiiiiic et 15
Figure 2-10 GNU RISC-V Cross Create FIash IMagecc.cccooviviiiiiii e 16
Figure 2-11 BUild ..o 17
Figure 2-12 Set DEDUQG LEVELuviiiiiiiei et e e s ee e e e e e s e nnreees 18
Figure 2-13 Create Software Debug Configuration Option............cccoeuiiiiiiiiiiiiie 19
Figure 2-14 Set Main Tab.......cooo i 20
Figure 2-15 Set Debugger Tab........oo e e 20
Figure 2-16 Set Startup Tab ... s 21
FIGUIE 2-17 DEDUG VIBWeeiiiiiiiiiie ittt stttk e e skttt e s bb e e e s e e e s nnnneeas 22

IPUG910-1.6E i

List of Tables

List of Tables

Table 2-1 Data Type Width of 32-bit RISC-V Architecture Processor.........cccccccvvvviiviieeeiiiiccinneeeenn, 7

IPUG910-1.6E ii

1 GMD Software Installation & Configuration

IPUG910-1.6E

1 GMD Software Installation
& Configuration

GMD software supports the compiling of Gowin_PicoRV32 software
design, compile, download, and debug, etc.

The GMD software package is available at GOWINSEMI website.

For the installation and configuration of the GMD software, as well as
the installation and configuration of the software driver for the emulator
used to debug Gowin_PicoRV32, see SUG549, GMD User Guide.

Note!
It is recommended to use GMD 2025.01.

1(24)

https://www.gowinsemi.com/en/support/home/
http://cdn.gowinsemi.com.cn/SUG549E.pdf

2 Software Project Template 2.1 Software Project Creation

2 Software Project Template

2.1 Software Project Creation

IPUG910-1.6E

In the toolbar, select "New" () or navigate through the menu "File >

New > C/C++ Project > C Managed Build" to create a project.
2.1.1 Select Project Type and Software Toolchain

Create the project name and location, and choose the project type and

software toolchain, as shown in Figure 2-1

1. Set the project name and location. For example, select "Use default
location" to use the current workspace.

2. Select the project type "Empty Project".

3. Select the toolchain "RISC-V Cross GCC"

4. Click "Next"

Figure 2-1 Select Project Type and Software Toolchain

W [m| X

C Project —

Create C project of selected type

Project name: |test_demo

Use default location

DAGMD_2025 workspace\workspace_riscvitest_ demo Browse...
default
Project type: Toolchains:
¥ (= Executable Arm Cross GCC

® Empty Project MinGW GCC

® Hello World ANSI C Project o

@ Hello World Arm C Project

@ Hello World RISC-V C Project
(z= Shared Library

(z= Static Library

(= Makefile project

Show project types and toolchains only if they are supported on the platform

‘/?j' = Back FEinish Cancel

2(24)

2 Software Project Template 2.1 Software Project Creation

2.1.2 Select Platform and Configuration

Choose the platform and configuration, which include "Debug" and
"Release", then click "Next", as shown in Figure 2-2.

Figure 2-2 Select Platform
W o X

Select Configurations —

Select platforms and configurations you wish to deploy on

Project type: Executable
Toolchains: RISC-V Cross GCC

Configurations:

% Debug
) Release

Select all

Deselect all

Advanced settings...

Use "Advanced settings" button to edit project's properties.

Additional configurations can be added after project creation.
Use "Manage configurations” buttons either on toolbar or on property pages.

® < Bk] [cnce

2.1.3 Select Toolchain and Path

Select the specific software toolchain and its path. The GMD software
already integrates the toolchain and preconfigures the path, so in most
cases, the default selection can be used, such as riscv-none-elf-gcc and its
corresponding path. Click "Finish", as shown in Figure 2-3.

IPUG910-1.6E 3(24)

2 Software Project Template 2.1 Software Project Creation

Figure 2-3 Select Toolchain and Path

W [m] x

GNU RISC-V Cross Toolchain —

Select the toolchain and configure path

Toolchain name: |xPack GNU RISC-V Embedded GCC (riscv-none-elf-gcc) ~

Toolchain path: |${ec|ipse_home}\too|:hain\gowin\gcc_riscv\bin Browse... | xPack..

On macOS use Shift+Cmd+'.' to show the hidden folders while browsing the file system. xpm uses a .content folder to store the binaries.

2.1.4 Create Project Structure and Files

After the project has been created, select the newly created project in
the "Project Explorer" view to establish the project structure and files, and
begin software programming and design.

Taking the SDK reference design as an example, the project structure
and code definitions are as follows.

® bsp: the definition of peripheral driver function

- simpleuart.h
simpleuart.c: the definition of peripheral Simple UART driver
function

- wbgpio.h
wbgpio.c: the definition of peripheral GPIO driver function

- wbi2c.h
wbi2c.c: the definition of peripheral I2C driver function

- wbspi.h
wbspi.c: the definition of peripheral SPI driver function

- wbspiflash.h
wbspiflash.c: the definition of peripheral SPI-Flash driver function

- wbuart.h
wbuart.c: the definition of peripheral UART driver function

® lib: the definition of system information

- firmware.h
firmware.c: the definition of system information

- printf.c: the redefinition of printf function

IPUG910-1.6E 4(24)

2 Software Project Template 2.2 Set the Project

Config.h: the start-up and operation mode of user configurations
custom_ops.S: the definition of user instructions

irg.h
irg.c: interrupt handler

loader.c: the definition of start-up

main.c: user-defined main function

Picorv32.h: the definition of kernel register and address mapping
start.S: the definition of startup program

sections_debug.lds: Linker script file for debugging

sections_xip.lds: Linker script file for running program instructions in
external SPI-Flash XIP mode

sections.lds: Linker script file for running program instructions in
internal ITCM

If there are code updates during software development, select the

current project in the "Project Explorer" view, right-click "Refresh" to update
the project.

2.2 Set the Project

In the "Project Explorer" view, select the current project, right-click and

choose "Properties > C/C++ Build > Settings > Tool Settings" to set the
project.

For Gowin_PicoRV32, the following options need to be set:

Target Processor

Optimization

Debugging

GNU RISC-V Cross C Compiler

- Includes

GNU RISC-V Cross C Linker

- General

GNU RISC-V Cross Print Size

GNU RISC-V Cross Create Flash Image
- General

2.2.1 Target Processor

The “Target Processor” option is used to configure the RISC-V target

processor, as shown in Figure 2-4.

IPUG910-1.6E

5(24)

2 Software Project Template 2.2 Set the Project

Figure 2-4 Target Processor

53 Tool Settings | B3 Toolchains |l Devices| [0 Container Settings Build Steps Build Artifact| >

2

(Target Pracessor Architecture RV32I (-march=rv32i*) ~

EEy Tmizati
(&2 Optimization Multiply extension (RVM)

B Warni
& Marnings [] Atamic extension (RVA)

(% Debugging

~) GNU RISC-V Cross Assembler Floating point None i
(2 Preprocessor Compressed extension (RVC)
(& Includes Other extensions | _zicsr

(% Warnings
= 9
(2 Miscellaneous Integer ABI ILP32 (-mabi=ilp32*) w

~ B GNU RISC-V Cross C Compiler

Floating paint ABl | None ~
(2 Preprocessor
(2 Includes Tuning Size (-mtune=size) ~
) T— -
(& Optimization Code model Medium Any (-memodel=medany) w

2 Warnings

(2 Miscellaneous Small data limit 8

~ & GNU RISC-V Cross C Linker Align Strict (-mstrict-align)
General
g \ . Small prologue/epilogue (-msave-restare)
2 Libraries)) . L . . .
(5 Miscellaneous orce string operations to call library functions (-mmemcpy)
~ & GMNU RISC-V Cross Create Flash Image Other target flags
(2 General
v % GNU RISC-V Cross Create Listing
(2 General
v) GMNU RISC-V Cross Print Size

(2 General

® Architecture: Select "RV32l(-march=rv32i*)", Since Gowin_PicoRV32
supports the RISC-V 32-bit integer instruction set, the "RV32I" option
must be selected.

® Multiply extension (RVM): If the RV32M extension is required, enable
the "Multiply extension (RVM)" option. At the same time, when
configuring Gowin_PicoRV32 in the hardware design using the IP Core
Generator tool, select the "Support RV32M Extends" option under the
CORE configuration of Gowin PicoRV32. Otherwise, it may cause
Gowin_PicoRV32 to run incorrectly.

® Atomic extension (RVA): Gowin_PicoRV32 does not support atomic
instruction extension, so disable this option.

® Floating point: Gowin_PicoRV32 does not support floating-point
extension, so select "None".

® Compressed Extension (RVC): If the RV32C extension is required,
enable the "Compressed extension (RVC)" option. At the same time,
when configuring Gowin_PicoRV32 in the hardware design using the
IP Core Generator tool, select the "Support RV32C Extends" option
under the CORE configuration of Gowin PicoRV32. Otherwise, it may
cause Gowin_PicoRV32 to run incorrectly.

® Other Extensions: Add _zicsr, a standard extension in the RISC-V
instruction set architecture (Zicsr) that enables access to and
operations on Control and Status Registers (CSR).

IPUG910-1.6E 6(24)

2 Software Project Template 2.2 Set the Project

IPUG910-1.6E

Integer ABI: Set the calling rule of ABI function supported by RISC-V
target platform. Gowin_PicoRV32 is a 32-bit RISC-V architecture
processor platform and does not support hardware floating-point
instruction, so select "ILP32 (-mabi=ilp32*)". The data type width of
32-bit RISC-V architecture processor is as shown in Table 2-1.

Table 2-1 Data Type Width of 32-bit RISC-V Architecture Processor

C Language Data Types

Data Type Width of 32-bit RISC-V Architecture
(Unit: Byte)

char 1

short

int

long

long long

void *

float

double

L IENENSE-IESENEN

long double 16

Tuning: Specify the compiling toolchain GCC as the name of target
processor for improving code performance. Gowin_PicoRV32 does not
support this option, so select "Size(-mtune=size)".

Code model: Set the parameter "-mcmodel". This parameter specifies
the program’s addressing range, and select "Medium Any
(-mcmodel=medany)". The "(-mcmodel=medany)" option is used to
specify that the program's addressing range can be in any 4GB space.
The addressing space is not predetermined, and the application is
relatively flexible.

Small data limit: Set the "-msmall-data-limit" parameter. This parameter
specifies the maximum size in bytes of global and static variables that
can be placed into small data areas. This parameter is set to 8.

Align: Set whether to avoid operations that result in unaligned memory
access. Gowin_PicoRV32 does not support fast unaligned access, so it
is recommended to select Strict(-mstrict-align).

Small prologue/epilogue(-msave-restore): If this option is selected,
library functions are used to generate the smallest possible call
prologue and epilogue code, but with slower execution speed. By
default, faster inline code is used.

You can manually add the following configurations in the "Other target
flags" option.

- Allow use of PLTs(-mplt)
If this option is configured, use PLT to generate interrupt control
code.

- Integer divide instructions(-mdiv)
If this option is selected, integer division hardware instructions will

7(24)

2 Software Project Template

2.2 Set the Project

2.2.2 Optimization

be used, which require processor support for the RV32M
instruction set extension. Since Gowin_PicoRV32 supports the
RV32M extension, you can enable the "Multiply extension (RVM)"
option. At the same time, in the hardware design for
Gowin_PicoRV32, configure the CORE options in the IP Core
Generator tool and select the "Support RV32M Extends" option.

-mpreferred-stack-boundary=num: The stack boundary is aligned
to 2num bytes. If not specified, the default value is 24, that is, 16
bytes or 128 bits. If this option is configured, it needs to be used
when building all modules (including libraries, system libraries, and
start modules).

-mexplicit-relocs / -mno-exlicit-relocs: When dealing with symbolic
addresses, use or do not use the assembler redirection operators.
Another configuration is to use assembly macros, which can limit
optimization.

-mrelax

-mno-relax: Use the linker relaxation to reduce the number of
instructions required to implement symbolic addresses. The default
is to use linker relaxation.

-memit-attribute / -mno-emit-attribute: Output or no output of
RISC-V attribute information to ELF objects. This feature applies to
binutils 2.32.

-malign-data=type: Control how GCC aligns variables and
constants of array, struct, union, and so on. The supported type
values are "xlen" and "natural". "xlen" uses register widths as
alignment value, and "natural" uses natural alignment. The default
value is "xlen".

The “Optimization” option is used to set the build optimization level, as
shown in Figure 2-5.

IPUG910-1.6E

8(24)

2 Software Project Template 2.2 Set the Project

Figure 2-5 Optimization

3 Tool Settings | &3 Toolchains |l Devices| [Container Settings Build Steps Build Artifact| ™

(¥ Target Processor Optimization Level MNone (-00) ~
& Optimization Message length (-fmessage-length=0)
['char' is signed (-fsigned-char)
] Function sections (-ffunction-sections)
[Data sections (-fdata-sections)

2 Warnings
(2 Debugging
~ B3 GNU RISC-V Cross Assembler
g Preprocessor

2 Includes [INo common unitialized (-fno-comman)

(# Warnings [Do not inline functions {-fno-inline-functions)

Miscellaneous []Assume freestanding environment (-ffreestanding)
v i GNU RISC-V Cross C Compiler [Disable builtin (-fno-builtin)

o - s - s
(% Preprocessor [JSingle precision constants (-fsingle-precision-constant)

[Position independent code (-fPIC)
[JLink-time optimizer (-flta)

2 Includes

Optimization
& Warnings
? . 9 [Disable loop invariant move {-fno-move-loop-invariants)
Miscellaneous
~) GNU RISC-V Cross C Linker Sidver SpTTEETEr (29

2 General

Libraries
Miscellaneous
~ B3 GNU RISC-V Cross Create Flash Image
2 General
~ B3 GNU RISC-V Cross Create Listing
2 General
~ B3 GMNU RISC-V Cross Print Size
2 General

® Optimization Level: The optimization level is set using the -O options,
which balance build speed, code performance, and code size. The
selectable levels include -O0, -O1, -02, -03, -Os, -Ofast, -Og, and -Oz,
with -O0/-01/-02/-0O3 providing progressively higher levels of
optimization.
- -00: No optimization.

- -Os: Based on -0O2, but disables options that increase code size to
achieve optimal code size reduction.

- -0g: Based on -0O0, but enables some optimization options that are
suitable for debugging.

® Message length (-fmessage-length=n)
Displays the error message in the console window as n characters per
line. If set to 0, the newline function is turned off and an error message
is displayed as a line. The default is -fmessage-length=0. It is
recommended to select this option.

® ‘char’ is signed (-fsigned-char)
Set "char" type data as signed number.

® Function sections (-ffunction-sections)/Data sections (-fdata-sections)

- If the target supports arbitrary segmentation, have each function or
data item create a separate segment in the output file, using the
name of the function or data item as the name of the output
segment.

IPUG910-1.6E 9(24)

2 Software Project Template 2.2 Set the Project

IPUG910-1.6E

- Enable this option if the linker can perform the referenced localized
optimizations in the improved instruction space.

- When used with linker garbage collection (linker -- gc-sections
option), unused function segments and data item segments are
automatically deleted during the final generation of the executable
file, resulting in a smaller compilation Size.

Note!

This option should be selected only when it provides a significant effect, and it should be
used together with selecting “Remove unused sections (-Xlinker --gc-sections)” under
"GNU RISC-V Cross C Linker > General" to reduce code size.

No common unitialized (-fno-common): The fno-common option
specifies that the compiler places uninitialized global variables in the
BSS segment of the target file. This prevents the linker from merging
the tentative definitions, so if the same variables are defined in more
than one compilation unit, a multi-definition error occurs. It is
recommended to disable this option.

Do not inline functions (-fno-inline-functions): If you select this option,
no inline functions are expanded except those marked with the
"always_inline" property. This is the default setting when optimization is
turned off. Users can also mark a single function with the noinline
property to avoid inlining of the function.

Assume freestanding environment (-ffreestanding): Assume a
freestanding environment during target compiling, where the standard
library may not exist and the program launch may not be the main
function. One case is the operating system kernel. It is equivalent to
-fno-hosted.

Disable builtin (-fno-builtin)

- Built-in functions not prefixed with "_builtin_" are not recognized.
The affected functions include functions that are not built-in when
using "-ansi" or "-std" options (for strict ISO C consistency)
because there is no standard ISO meaning.

- GCC typically generates special code to handle certain built-in
functions more efficiently. For example, a call to alloca may
become a single instruction that directly adjusts the stack, and a
call to "memcpy" may become an inline copy loop. The generated
code is usually smaller and faster, but because function calls no
longer appear that way, users can't set breakpoints on them or
change the behavior of a function by connecting to different
libraries.

- In addition, when a function is identified as a built-in function, GCC
may use information about the function to warn of problems calling
the function or to generate more efficient code, even if the
generated code still contains calls to the function. For example,
when "printf" is built in and "strlen" is known not to modify global
memory, an error call to "printf" is warned in "-wformat".

Single precision constants (-fsingle-precision-constant): Floating-point

10(24)

2 Software Project Template 2.2 Set the Project

constants are treated as single-precision data.

® Position independent code (-fPIC): If the target side supports, generate
position-independent code (PIC) suitable for use in the shared library.
Gowin_PicoRV32 does not support PIC, so it is recommended to
disable this option.

- Link-time optimizer (-flto)
This option runs standard link-time optimizer.

- When users use a source code to call, generate GIMPLE (one of
the internal representations of GCC) and write it to a special ELF
section in the object file. When the object files are joined together,
all the function bodies are read from the ELF section and
instantiated as if they were part of the same translation unit.

- When you use the link-time optimizer, specify "-flto" and
optimization options at compile time and during the final connection.
It is recommended to compile all files that participate in the same
linking using the same options, and specify these options at
link-time.

® Disable loop invariant move (-fno-move-loop-invariants): Select
whether to cancel the loop invariant action transfer in the RTL loop
optimizer. If the optimization level is set to -O1 or higher (except -Og),
the loop invariant action transfer in the RTL loop optimizer will be
automatically started.

2.2.3 Debugging

IPUG910-1.6E

The "Debugging" option is used to set the debugging level. For
example, -g, -g1, and -g3 generate debugging information with different
levels of detail, as shown in Figure 2-6.

11(24)

2 Software Project Template 2.2 Set the Project

Figure 2-6 Debugging

) Tool Settings | B Toolchains B Devices| [0 Container Settings Build Steps Build Artifact| **

(% Target Processor Debug level Default (-g) ~
Optimization -
- . Debug format Toolchain default ~
(22 Warnings
(¥ Debugging []Generate prof information (-p)

~ B3 GNU RISC-V Cross Assembler []Generate gprof information (-pg)

R i
(% Preprocessor Other debugging flags

2 Includes
Warnings
(# Miscellaneous
~ B3 GNU RISC-V Cross C Compiler
(& Preprocessor
2 Includes
(# Optimization
(# Warnings
(# Miscellaneous
w B3 GNU RISC-V Cross C Linker
General
(Libraries
& Miscellaneous
~ B3 GNU RISC-V Cross Create Flash Image
General
~ B3 GNU RISC-V Cross Create Listing
General
~ B3 GNU RISC-V Cross Print Size
General

2.2.4 GNU RISC-V Cross C Compiler > Includes

The "GNU RISC-V Cross C Compiler > Includes > Include paths (-1)"
option is used to specify the search paths for C header files. Both absolute
and relative paths can be used, as shown in Figure 2-7.

Taking the SDK reference design as an example, the C header file
search paths are configured as follows:

® "${workspace loc:/${ProjName}/src}"
® "${workspace_ loc:/${ProjName}/src/bsp}"
® "${workspace loc:/${ProjName}/src/lib}"

IPUG910-1.6E 12(24)

2 Software Project Template

2.2 Set the Project

2.2.5 GNU RISC-V Cross C Linker

Figure 2-7 GNU RISC-V Cross C Compiler > Includes

) Tool Settings |) Toolchains |l Devices| [J Container Settings Build Steps Build Artifact| %

(2 Target Processor
(% Optimization
(% Warnings
(2 Debugging
w 3 GNU RISC-V Cross Assembler
@ Preprocessor
2 Includes
(% Warnings
(& Miscellaneous
w 3 GNU RISC-V Cross C Compiler
(2 Preprocessor
(2 Includes
(2 Optimization
(2 Warnings
(# Miscellaneous
~ 83 GNU RISC-V Cross C Linker
General
(2 Libraries
(# Miscellaneous
~ 8 GNU RISC-V Cross Create Flash Image
General
w 83 GNU RISC-V Cross Create Listing
2 General
w [GNU RISC-V Cross Print Size

General

Include paths (-1} & w F

i pace_loc:/${Proj }sre
"${workspace_loc/${ProjNamel/src/bsp}”
"${workspace_locy/${PrajNamel/srcflib}”

&

Include system paths (-isystem) &

Include files (-include) &

The "GNU RISC-V Cross C Linker > General > Script files (-T)" option

is used to specify the Flash linker script file. You can set sections.Ids,
sections_xip.lds, or sections_debug.lds as the Flash linker script file for
Gowin_PicoRV32, as shown in Figure 2-8.

Referring to the hardware design of Gowin_PicoRV32, the "Boot
Mode" option in the ITCM settings of Gowin_PicoRV32 within the IP Core
Generator tool is described as follows:

® |f Boot Mode is set to "MCU boot from external Flash and run in ITCM"
or "MCU boot and run in ITCM", then select "sections.lds" as Flash

linker script file, such as
"${workspace_loc:/${ProjName}/src/sections.lds}".

® |f Boot Mode is set to "MCU boot and run in external Flash", then select

"sections_xip.lds" as Flash linker script file, such as
"${workspace_loc:/${ProjName}/src/sections_xip.Ids}".

® [f Boot Mode is set to "MCU boot from external Flash and run in ITCM"
or "MCU boot and run in ITCM", and you are debugging the software
design, select sections_debug.lds as the Flash linker script file, such as

"${workspace_loc:/${ProjName}/src/sections_debug.lds}"

IPUG910-1.6E

13(24)

2 Software Project Template

2.2 Set the Project

Figure 2-8 GNU RISC-V Cross C Linker

i) Tool Settings| &) Toolchains B Devices| [J Container Settings Build Steps Build Artifact|

2

(3 Warnings
(# Debugging

2 Includes
Warnings

2 Includes

(% Warnings

(2 General
(2 Libraries

General

= General

General

(2 Target Processor
(# Optimization

~ 83 GNU RISC-V Cross Assembler
(# Preprocessor

(2 Miscellaneous
w 83 GNU RISC-V Cross C Compiler
@ Preprocessor
(% Optimization
(& Miscellaneous
w 8 GNU RISC-V Cross C Linker
(# Miscellaneous
~ 83 GNU RISC-V Cross Create Flash Image

~ 8 GNU RISC-V Cross Create Listing

~ 83 GNU RISC-V Cross Print Size

Script files [-T) £ & &

Do not use standard start files (-nostartfiles)

[Do not use default libraries (-nodefaultlibs)
[JNo startup or default libs (-nostdlib)

Remove unused sections (-Xlinker --gc-sections)

[JPrint removed sections (-Xlinker --print-gc-sections)

[] Omit all symbol information (-s)

® Do not use standard start files (-nostartfiles): Standard start files are
not used when configuring linking. Gowin_PicoRV32 must use custom
start files, so this option is required to be selected.

® Do not use default libraries (-nodefaultlibs): Standard system libraries
are not used when configuring linking, only the selected libraries are
transferred to the linker. The options that specify the system library
linker, such as "-static-libgcc" or "-shared-libgcc", are ignored. Normal
use of standard startup files, except using "-nostartfiles". The compiler
may generate calls to "memcmp”, "memset", "memcpy", and

"memmove".

® No startup or default libs (-nostdlib)
- Standard system startup files or libraries are not used when linking.

- There are no startup files, only user-specified libraries are passed
to the linker, and options for specifying system library connections
(such as "-static-libgcc" or "-shared-libgcc") are ignored.

- Please disable this option.
® Remove unused sections (-Xlinker-gc-sections)
- This option removes segments that are not called.

- This option works with the "-ffunction-sections" and
"-fdata-sections" options set by the compiler optimization to

IPUG910-1.6E

14(24)

2 Software Project Template 2.2 Set the Project

remove uncalled functions and variables at linking time, further
reducing code size.

® Print removed sections (-Xlinker-print-gc-sections): When "Remove
unused sections (-Xlinker-gc-sections)" is selected, this option can be
selected at the same time, and the name of the deleted section is
printed at compile time to mark the deleted section.

® Omit all symbol informations (-s)
Remove all symbol tables and relocation information from the
executable file.

Note!

Select "Do not use standard start files (-nostartfiles)" and "Remove unused sections
(-Xlinker --gc-sections)" options by default.

2.2.6 GNU RISC-V Cross Print Size

The "GNU RISC-V Cross Print Size > General" option is used to output
the size statistics of each segment (text, data, bss) and the total size of the
RISC-V MCU executable file. It supports Berkeley and SysV formats;
different formats only affect the output style and do not change the actual
segment size calculations, as shown in Figure 2-10.

Figure 2-9 GNU RISC-V Cross Print Size

) Tool Settings | &) Toolchains B Devices| [0 Container Settings Build Steps Build Artifact| ™

2

(2 Target Processor Size format | Berkeley :
(% Optimization [(JHex

(2 Warnings

(2 Debugging
) GNU RISC-V Cross Assembler Other flags |
@ Preprocessor

2 Includes
(2 Warnings
(2 Miscellaneous
v & GNU RISC-V Cross C Compiler
(# Preprocessor
(2 Includes
(% Optimization
% Warnings
(& Miscellaneous
~ 8 GNU RISC-V Cross C Linker
2 General
2 Libraries
2 Miscellaneous
w 3 GNU RISC-V Cross Create Flash Image
General
w @3 GNU RISC-V Cross Create Listing
(% General
v & GNU RISC-V Cross Print Size
(% General

IPUG910-1.6E 15(24)

2 Software Project Template 2.2 Set the Project

2.2.7 GNU RISC-V Cross Create Flash Image

The "GNU RISC-V Cross Create Flash Image > General" option is
used to set the output format of the RISC-V MCU executable file, as shown
in Figure 2-10.

Taking the SDK reference design as an example, this option is
configured as follows:

® |n the "Output file format (-O)" option, select the output file format as
"Raw binary".

® Please select "Section": "-j .text" option
® Please select "Section": "-j .data" option

If you have custom sections in your software programming design that
map functions or variables to custom sections, add these custom sections

in "Other sections (-j)". For example, Gowin_PicoRV32 customizes the
following sections:

® .irgsec
® .dsec
® .btsec

Figure 2-10 GNU RISC-V Cross Create Flash Image

i Tool Settings | B3 Toolchains | B Devices| [0 Container Settings Build Steps Build Artifact| *,

(2 Target Processor Output file format (-0) |Raw binary e
(# Optimization
(22 Warnings
(%2 Debugging

[Section: - text
[Section: -j .data

v %3 GNU RISC-V Cross Assembler Other sections () € & & &
(& Preprocessor
(# Includes ldsec
(# Warnings btsec

(# Miscellaneous
~ B3 GMU RISC-V Cross C Compiler
(% Preprocessor
2 Includes
(2 Optimization
(# Warnings
(# Miscellaneous
~ 83 GMU RISC-V Cross C Linker
2 General
% Libraries
2 Miscellaneous
w B3 GMNU RISC-V Cross Create Flash Image
(2 General
w %3 GNU RISC-V Cross Create Listing
(# General
~ B GMU RISC-V Cross Print Size

% General

Other flags

IPUG910-1.6E 16(24)

2 Software Project Template 2.3 Build Projects

2.3 Build Projects

Define the BUILD_MODE startup parameter macro in config.h
according to the configuration of the "Boot Mode" setting in the ITCM
options of Gowin_PicoRV32 within the IP Core Generator tool, as
referenced from the Gowin_PicoRV32 hardware design.

® MCU boot and runin ITCM : #define BUILD_MODE BUILD_LOAD

® MCU boot from external Flash and run in ITCM: #define BUILD_MODE
BUILD_BURN

® MCU boot and run in external Flash: #define BUILD_MODE
BUILD_XIP

After completing the project configuration and code development, build

the project by selecting "Build" (%) or "Build All" (=) in the toolbar, or
"Project > Build Project / Project > Build All" in the menu. This will generate
the software executable file, as shown in Figure 2-11.

Figure 2-11 Build

Ar workspace test - picorv32_demoy/src/main.c - GMD - m] x
Fle Edit Source Refactor Navigate Search Project Run Gowin Window Help
o5 |® & - &) Bi% OpenProject SRR I Y Y-
D R ey g Close Project Q ig|[@E
5 Project Explorer > = B picorvd2h [m Build Al Ctrl+8 =8 o x BT @8 = 8
0 g ~| 2 i— CPEIJ, Build Configurations > ~ S5 R e M B
v % picorv32_demo oo typeder] Build Project | = configh -
4 Binaries 55 Build Working Set— —> & picorv32h
56 I Build Project o f h
1l Includes > 1 Cean.. U firmware!
(= Debug 58 } AHBRE Build Automatically 8 irgh
~ = src 59 2 simpleuarth
& bsp 60 //Addre Build Targets > o whuarth
b 61 #define Bse o whapioh
& #define C/C++ Index > D_RegDef *) AHBREGDEMO_BASE) U whbgpio.
canfig.h = whspiflashh
custom_ops.S //0pen P'?P‘?“[ES # DEV_GWSAG0_GW2A
. RegistEr DETINTTIONS o R R
L] irq.c typedef struct #
irg.h 6 #
[g] loader.c 68 __I0 unsigned int REGE; //@x@@ # MEM_MAP_ADD
. 69 __I0 unsigned int REG1; //@x@4 < P B v
lg] main.c = 5 = 5
picorv3zh
storts [2] Problems & Tasks B Console X [Properties & Terminal X O GGl EEEERE 2B -08--08
sections debuglds CDT Build Console [picorv32_ demol
sections xiplds Inveking: GNU RISC-V Cross Create Listing ~

! risev-none-elf-objdump --source --all-headers --demangle --line-numbers --wide "picorv32_demo.slf" > "picorv32_demo.ls
sections.lds Finished building: picorv3Z_demo.lst
Inveking: GNU RISC-V Cress Print Size
riscv-none-elf-size --format=berkeley "picorv32_demo.elf"
text data bss dec hex filename
7216 lee 112 7428 1de4 picerv32_demo.elf
Finished building: picorv32_demo.siz

19:42:32 Build Finished. @ errors, @ warnings. (teck 3s.73ms)

< >

I picorv32_demo

2.4 Download Projects

After the software programming design of Gowin_PicoRV32 is built,
see IPUG913, Gowin_PicoRV32 Software Downloading Reference Manual
for the download method of the software programming design.

2.5 Debug and Run Projects

After downloading the Gowin_PicoRV32 software executable file, if
issues occur in the user design, the project can be debugged by
connecting the development board with common debugging emulators
such as GWU2X, GWUSB, J-Link, or Olimex.

IPUG910-1.6E 17(24)

http://cdn.gowinsemi.com.cn/IPUG913E.pdf
http://cdn.gowinsemi.com.cn/IPUG913E.pdf

2 Software Project Template

2.5 Debug and Run Projects

The Gowin_PicoRV32 software debugging process includes:

Set the debugging level

Set the Flash linker script file
Set the debugging mode
Connect the debugging emulator

Start the debugging

2.5.1 Set Debug Level

In the "Project Explorer" view, select the current project, right click to
select "Properties > C/C++ Build > Settings > Tool Settings > Debugging >
Debug level" to set the debug level. For example, -g, -g1, and -g3 generate
debugging information with different levels of detail, as shown in Figure
2-12.

IPUG910-1.6E

Figure 2-12 Set Debug Level

% Tool Settings | 3 Toolchains | [l Devices| [J Container Settings

(2 Target Processor

Optimization

&2 Warnings

(2 Debugging
~ B3 GNU RISC-V Cross Assembler

vE

vE

vE

(# Preprocessor
2 Includes

Warnings

(# Miscellaneous

3 GNU RISC-V Cross C Compiler

(& Preprocessor
2 Includes

(# Optimization

(# Warnings

(# Miscellaneous

3 GNU RISC-V Cross C Linker

General
(Libraries
& Miscellaneous

3 GNU RISC-V Cross Create Flash Image

General

3 GNU RISC-V Cross Create Listing

General

3 GMNU RISC-V Cross Print Size

General

Build Steps

Debug level

Debug format

[]Generate prof information (-p)
[]Generate gprof information (-pg)

Default (-g)

Toolchain default

¥
2

Other debugging flags

Debug level configuration includes the following options:

None: No debugging information
Minimal (-g1): Lowest debugging level
Default (-g): Default debugging level
Maximum (-g3): Highest debugging level

18(24)

2 Software Project Template 2.5 Debug and Run Projects

2.5.2 Set Flash Linker Script File

When debugging the Gowin_PicoRV32 software design, specify the
Flash linker script file sections_debug.lds. For details on configuring the
Flash linker script file, you can see 2.2.5 GNU RISC-V Cross C Linker.

Modify the "GNU RISC-V Cross C Linker > General > Script files (-T)"
option to "${workspace_loc:/${ProjName}/src/sections_debug.lds}".

After completing the Flash linker script file configuration, rebuild the
project as described in 2.3 Build Project.

2.5.3 Set Debug Mode

IPUG910-1.6E

From the menu bar, select "Run > Debug Configurations....".
Gowin_PicoRV32 supports both GDB OpenOCD Debugging and GDB
QEMU riscv32 Debugging modes.

For example, if you choose GDB OpenOCD Debugging, create a
debug configuration under "Debug Configurations" for this mode, as shown
in Figure 2-13.

Figure 2-13 Create Software Debug Configuration Option

W Debug Configurations [m] >
Create, manage, and run configurations \@‘\.
[B Y~ Configure launch settings from this dialog:
|@pg filter text ‘ - Press the 'New Configuration' button to create a configuration of the selected type.
[E] ¢/C+ + Application & - Press the ‘New Prototype’ button to create a launch configuration prototype of the selected type.

[E] C/C++ Attach to Application
[E] C/C++ Container Launcher
[] C/C++ Postmartem Debugger - Press the ‘Duplicate’ button to copy the selected configuration.

- Press the 'Export’ button to export the selected configurations.

[E] C/C++ Remote Application % -
Cif C/C++ Unit
[€] GDB Hardware Debugging

Press the 'Delete’ button to remove the selected configuration.
’ - Press the Filter’ button to configure filtering options.

v [£] GDB OpenOCD Dahuincina] - Select launch configuration(s) and then select 'Link Prototype’ menu item to link a prototype.

5] em3 demo det || New Configuration

[£] em3_demo det New PrototyPe N ew launch configuration
& Export...

[£] em3_demo det |

[u] - Select launch configuration(s) and then select 'Unlink Prototype’ menu item to unlink a prototype.

- Select launch configuration(s) and then select ‘R..e Valuss’ menu item to reset with prototyps valuss.
[E] cm3_demo del = Duplicate
[£] GDB PyOCD Debu Delete Edit or view an existing configuration by selecting it.
[€] GDB QEMU aarch
v [&] GDB QEMU arm [
[£] em3_demo det
[£] GDB QEMU grus Reset with Prototype Values
[€] GDB QEMU riscv32 Debugging
[£] GDB QEMU riscvé4 Debugging
[£] GDB SEGGER J-Link Debugging
& Launch Group

Link Prototype..
Configure launch perspective settings from the ‘Perspectives’ preference page.

Unlink Pr:

Filter matched 22 of 24 items

a
@ Debug Close

The established debug configuration mainly consists of the Main,
Debugger, and Startup tabs.

Main Tab

The "Main" tab is used to set options such as the current project
(Project) and the C/C++ Application, as shown in Figure 2-14.

19(24)

2 Software Project Template 2.5 Debug and Run Projects

Figure 2-14 Set Main Tab

Main| 35 Debugger| [= Starlup| Ep Source| [Common| &, SVD Path

Praject:

| picorv32_dema Browse...

C/C++ Application:

| Debug\picorv32_demo.elf

Variables... Search Project... Browse...
Build (if required) before launching
Build Configuration: |Select Automatically ~
(O) Enable auto build (O Disable auto build
(®) Use workspace settings Configure Workspace Settings...

Debugger Tab

"Debugger" tab is used to set the "OpenOCD" and "GDB" options, as
shown in Figure 2-15.

Figure 2-15 Set Debugger Tab
Main | %5 Debugger . & Startup} Ep Source\| i Qommorﬂ T svD Patlﬂ

OpenQCD Setup "
Start OpenOCD locally

Executable path: | ${openocd_path}/${openocd_executable} Browse... | | Variables...

Actual executable: |fundeﬁnedjathfopenocd.exe

(to change it use the global or workspace preferences pages or the project properties page)

GDB port:

Telnet port:

Tel port: 6666

Config options: -f board/openocd_olmx.cfg

Allocate console for OpenQCD Allocate console for the telnet connection

GDE Client Setup
Start GDB session

Executable name: | ${cross_prefixjgdb${cross_suffix} Browse... | Variables...

Actual executable: | riscv-none-embed-gdb |

Other options: | |

Commands: set mem inaccessible-by-default off
set arch riscvine32
Iset remotetimeout 250

Remote Target

Host name or IP address: |ocalhost

Port number: 3333

[JForce thread list update on suspend

IPUG910-1.6E 20(24)

2 Software Project Template 2.5 Debug and Run Projects

® Config options: Specifies the configuration file for the debugging
emulator. For example, when using GWU2X, add "-f
board/gowin_u2x_pico.cfg". Other commonly used debugging
emulators include:

- GWUSB: gowin_ftdi_dual_pico.cfg or gowin_ftdi_single_pico.cfg
- J-Link: gowin_jlink_pico.cfg (when using the WinUSB driver)
- Olimex: gowin_olimex_pico.cfg
® Commands:
- set mem inaccessible-by-default off

- set arch riscv:rv32 (specifies the RISC-V instruction set
architecture)

- set remotetimeout 250 (prevents protocol timeout)

Startup Tab

"Startup" tab is used to set debug and execution, as shown in Figure
2-16.
Figure 2-16 Set Startup Tab

El Main | %¥ Debugger | B Startup| & Source| [£] Comman| &, SVD Path

Initialization Commands ~

[Initial Reset. Type:

[JEnable Arm semihosting

Load Symbols and Executable
Load symbols
(®) Use project binary: picorv32_demo.elf

() Use file:

Symbols offset (hex): I:I

Load executable
(®) Use project binary: picorv32_demo.elf

() Use file:

Executable offset (hex): I:I

Runtime Options

Debug in RAM

a
o
O
W

rKspace... ysIEM..

a
)
A
]
o
a
m
o
W

ysterm...

Run/Restart Commands

Pre-run/Restart reset Type: (always executed at Restart)

[set program counter at (hex):

Set breakpoint at:

Continue

® |nitialization Commands

- Please select the "Initial Reset" option and configure the "Type" as
"init", so that the initialization can be executed automatically when

IPUG910-1.6E 21(24)

2 Software Project Template 2.5 Debug and Run Projects

debugging.

- Please disable the "Enable ARM semihosting" function which
Gowin_PicoRV32 does not support.

® |oad symbols and Load executable

- Please select the "Load symbols" option and select "Use project
binary" option.

- Please select the "Load executable" option and select "Use project
binary" option.

® Runtime Options: Select the "Debug in RAM" option. During debugging,
the software executable is loaded and written into the Instruction
Memory (ITCM).

® Run/Restart Commands

- Please select the "Pre-run/Restart reset" option and configure the
"Type" as "halt", so that it can pause automatically when debugging
on-line.

- Please select the "set breakpoint at" option and configure it as
"main", so that it can automatically set a breakpoint at the first
statement of main function when executing on-line debug.

- Please select the "Continue" option to automatically run to the
breakpoint position and pause when debugging.

2.5.4 Start Debug

IPUG910-1.6E

For example, when connecting the GWU2X debug emulator, select

Debug " % ¥ on the toolbar to launch the Debug view and run the
program, as shown in Figure 2-17.

Figure 2-17 Debug View

& workspace_test - picorv32_demo/sre/main.c - GMD - O X
File Edit Source Refactor Navigate Search Project Run Gowin Window Help
(] 2 =) Diw|m 0w DR ¢l [& -0~ Q@S ¢~ B S N W q m| B
45 Debug X [Project Explorer = B [b picorv3Zh [mainc X = O (=V.. X %B. &E. =pi. = 0O
=R AT 2 FEll=N-N
998
~ [£] picorv32_ demo Debug u2x [GDB OpenOCD Debuggi spplication entry Name Type Value
Appl try
M demo.elf = int _attribute_ ((optimize("00"))) main(void)
#1 (Suspended : Signal : SIGINT:In { . N
= ; //close all interrupt
= main() at main.c:112 0x2000cf0 mask irq(oFEEEETY;
35 openocd
o riscv-none-e If-gdb
uart_init(115208);
#endif
spi_flash_init(); //Initializes SPI-Flash
GPIC_Init(PICO_WBGPIO); //I zes GPIO
F/Tnterrupt 26 and 2 o but
irq_enable_one_bit(e); v (€ B
< >
& Console % i Registers [£ Problems @ Terminal [Memory Browser Gl Debugger Console [Memory = B8
L] BB E® -9~
picorv32_ demo Debug u2x [GDB OpenOCD Debugging]
Warn : Frefer QDB command ~targ extended-remote 3333 nstead of “target remote :33337 N
Ir nd: @x1668081b (mfg: @x48d (Gowin Semiconductor Corp), part: @x808@, ver: @xl)
har
nd: exleeeaslb (mfg: ex2ed (Gowin Semiconductor Corp), part: @x@e@ee, ver: @xl)
ha. t
ar the 1886 ms timelimit. GDE& alive packet not sent! (2713 ms). Workaround: increa
har
hat
hat
hat
har
ha
hat
har
v
< > < >

22(24)

2 Software Project Template 2.5 Debug and Run Projects

The Debug view mainly includes the following sub-views:

® \Variables sub-view: Displays the names and values of all variables
within the current scope.

® Expressions sub-view: Allows adding and monitoring the values of
custom expressions.

® Breakpoints sub-view: Lists all breakpoints set in the software project
and allows users to manage them.

® Disassembly sub-view: Displays the assembly code corresponding to
high-level language, useful for locating instruction-level issues during
debugging.

® Console sub-view: Shows process output.

® Memory sub-view: Provides a memory monitor list to inspect and
modify program memory.

® Memory Browser sub-view: An alternative to the Memory sub-view for
inspecting and modifying process memory.

® Registers sub-view: Displays MCU information at the register bit-field
level, allowing direct modification of registers or bit fields in the cells.

Debug Interrupt Handler

Gowin_PicoRV32 is an area-optimized RISC-V ISA processor with a
simple and easy-to-use interrupt control system. It does not support
hardware interrupt nesting or interrupt priority configuration.

Therefore, during debugging, when the program is in a paused state
(such as during single-step execution, breakpoint execution, or when
halted at a specific line or instruction), the MCU cannot respond to external
interrupt requests.

If you want to execute on-line debug of the external interrupt handler,
you need to set a breakpoint at the corresponding location in the interrupt
handler and execute the program into a continuous running state.

Click "Resume" (g) on the tool bar to put the program into a
continuous running state, and if no breakpoint is met, it will remain in a
continuous running state. In this state, when the external device issues an
interrupt request, MCU executes the interrupt handler and enter the pause
state when it runs to the breakpoint position in the interrupt handler. At this
time, you can execute single-step debug, breakpoint debug, viewing
variables, and other operations in the interrupt handler.

IPUG910-1.6E 23(24)

3 Reference Design

Reference Design

Gowin_PicoRV32 supports the reference designs for the GMD
(2025.01, tested). Access the following reference designs via the link.

---\ref_design\MCU_RefDesign\picorv32_demo
---\ref_design\MCU_RefDesign\picorv32_gemu_demo

IPUG910-1.6E 24(24)

http://cdn.gowinsemi.com.cn/Gowin_PicoRV32.zip

Y

—— PROGRAMMING FOR THE FUTURE ———

	Disclaimer
	Revision History
	Contents
	List of Figures
	List of Tables
	1 GMD Software Installation & Configuration
	2 Software Project Template
	2.1 Software Project Creation
	2.1.1 Select Project Type and Software Toolchain
	2.1.2 Select Platform and Configuration
	2.1.3 Select Toolchain and Path
	2.1.4 Create Project Structure and Files

	2.2 Set the Project
	2.2.1 Target Processor
	2.2.2 Optimization
	2.2.3 Debugging
	2.2.4 GNU RISC-V Cross C Compiler > Includes
	2.2.5 GNU RISC-V Cross C Linker
	2.2.6 GNU RISC-V Cross Print Size
	2.2.7 GNU RISC-V Cross Create Flash Image

	2.3 Build Projects
	2.4 Download Projects
	2.5 Debug and Run Projects
	2.5.1 Set Debug Level
	2.5.2 Set Flash Linker Script File
	2.5.3 Set Debug Mode
	Main Tab
	Debugger Tab
	Startup Tab

	2.5.4 Start Debug
	Debug Interrupt Handler

	3 Reference Design

