

Gowin_EMPU(GW1NS-4C)硬件设计 参考手册

IPUG932-1.2,2021-06-21

版权所有 © 2021 广东高云半导体科技股份有限公司

GO₩IN高云、₩、Gowin、GowinSynthesis以及高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2020/04/20	1.0	初始版本。
		● 支持外部设备 AHB PSRAM Memory Interface;
		● 支持外部设备 AHB HyperRAM Memory Interface;
0004/00/00		● 支持外部设备 APB SPI_Nor_Flash;
2021/02/08	1.1	● GPIO 支持多种端口类型配置;
		● I ² C 支持多种端口类型配置;
		● 升级软件版本以及软件开发工具包。
	1.2	● 修复已知的 SPI 全双工读写问题;
2021/06/21		● 删除综合工具 SynplifyPro;
		● 更新 FPGA 软件版本;
		● 更新参考设计。

i

目录

目	录	i
图	目录	. iii
表	目录	. iv
1	硬件架构	1
	1.1 系统架构	1
	1.2 系统特征	2
	1.2.1 MCU 内核系统	2
	1.2.2 FPGA 内核系统	3
	1.3 系统端口	3
	1.4 系统资源统计	8
2	硬件设计流程	9
	2.1 硬件环境	9
	2.2 软件环境	9
	2.3 IP Core Generator	9
	2.4 Programmer	9
	2.5 设计流程	. 10
3	工程模板	. 11
	3.1 工程创建	. 11
	3.1.1 创建工程	. 11
	3.1.2 设置工程名称和路径	. 12
	3.1.3 选择器件	. 12
	3.1.4 完成工程创建	. 13
	3.2 硬件设计	. 14
	3.2.1 TPIU 配置	. 17
	3.2.2 NVIC 配置	. 17

	3.2.3 GPIO 配置	18
	3.2.4 UART 配置	19
	3.2.5 AHB2 Master/Slave 配置	20
	3.2.6 SRAM 配置	21
	3.2.7 l ² C 配置	22
	3.2.8 SPI 配置	23
	3.2.9 RTC 配置	24
	3.2.10 APB2 Master 配置	24
	3.2.11 AHB PSRAM Memory Interface	26
	3.2.12 AHB HyperRAM Memory Interface	27
	3.2.13 APB SPI_Nor_Flash	28
	3.3 用户设计	28
	3.4 约束	29
	3.5 综合选项配置	29
	3.6 综合	30
	3.7 布局布线	30
	3.8 下载	31
4	参考设计	33

图目录

图	1-1 系统架构	. 1
图	3-1 创建 FPGA Design 工程	. 11
图	3-2 设置工程名称和路径	.12
图	3-3 选择器件	.13
图	3-4 完成工程创建	.13
图	3-5 选择 Gowin_EMPU(GW1NS-4C)	.14
图	3-6 系统结构图	. 15
图	3-7 TPIU 配置	. 17
图	3-8 NVIC 配置	.18
图	3-9 GPIO 配置	. 19
图	3-10 UART 配置	20
图	3-11 AHB2 Master/Slave 配置	21
图	3-12 SRAM 配置	22
图	3-13 I ² C 配置	23
图	3-14 SPI 配置	23
图	3-15 RTC 配置	24
图	3-16 APB2 Master[1-12]配置	25
图	3-17 综合选项配置	29
图	3-18 综合	30
图	3-19 布局布线	30
图	3-20 器件 GW1NS-4C/GW1NSR-4C 下载选项配置	. 31
图	3-21 器件 GW1NSER-4C 下载选项配置	. 32

表目录

表 1-1 系统端口定义	3
表 1-2 系统资源统计	8
表 3-1 系统配置选项	15
表 3-2 APB2 Master [1-12]基地址映射	26

IPUG932-1.2 iv

1 硬件架构

1.1 系统架构

Gowin_EMPU(GW1NS-4C), 是由 MCU 内核系统和 FPGA 内核系统组成的片上系统,如图 1-1 所示。

MCU JTAG IF JTAG Config-Core DAP Cortex-M3 TPIU IF TPIU Bus Matrix FPGA Fabric USER_INT[0-5] NVIC AHB2 Slave Extension SRAM FLASH AHB2 Slave AHB2 Master Extension AHB AHB2 Master LITE SRAM/FLASH IF GPIO IF BUS GPIO Clock/Reset AHB2APB Clock/Reset APB2 Extension IF APB2 Bridge UARTO IF UARTO Timer0 APB2 Master[1-12] UART1 IF UART1 Timer1 RTC IF Watch Dog

图 1-1 系统架构

MCU 内核系统,包括 MCU Core、AHB 总线及外部设备、AHB2APB Bridge、APB1 总线及外部设备等。

FPGA 内核系统,包括 MCU 内核系统的时钟和复位信号输入、MCU

IPUG932-1.2 1(33)

内核系统的数据存储器(SRAM)和指令存储器(FLASH)、APB2 Bridge、APB2 总线及外部设备等。

1.2 系统特征

Gowin_EMPU(GW1NS-4C),包括两个子系统:

- MCU 内核系统
- FPGA 内核系统

1.2.1 MCU 内核系统

MCU 内核系统包括:

- MCU Core:
 - ARM Cortex-M3 Core, ARM architecture v7-M Thumb2 指令集架构, 支持 16-bit 和 32-bit 指令集
 - DAP (Debug Access Port)
 - Bus Matrix
 - NVIC (Nested Vector Interrupt Controller)
 - TPIU (Trace Port Interface Unit)
- AHB 总线系统及外部设备
 - GPIO
 - AHB2 Master 用户扩展接口
 - AHB2 Slave 用户扩展接口
- AHB2APB Bridge
- APB 总线系统及外部设备
 - UARTO
 - UART1
 - Timer0
 - Timer1
 - Watch Dog
 - RTC
 - APB2 扩展接口

IPUG932-1.2 2(33)

1.2.2 FPGA 内核系统

FPGA 内核系统包括:

- 外部晶振时钟输入或内部晶振时钟,作为 MCU 内核系统的系统时钟源,系统时钟最高为 80MHz(以实际所用芯片及实际项目设计为准)
- 复位信号输入,作为 MCU 内核系统的系统复位信号
- 6个用户中断处理信号,用户扩展外部设备中断处理功能
- AHB 扩展接口
 - SRAM 和 FLASH,作为 MCU 内核系统的数据存储器和指令存储器
 - 1个 AHB2 Master 用户扩展接口
 - 1 个 AHB2 Slave 用户扩展接口
- APB2 扩展接口
 - SPI Master
 - I2C Master
 - 12 个 APB2 Master 用户扩展接口
- Memory
 - MCU 内核系统数据存储器 SRAM Size,可以配置为 2KB、4KB、 8KB 或 16KB
 - MCU 内核系统指令存储器 FLASH Size, 为 32KB

1.3 系统端口

Gowin_EMPU(GW1NS-4C)系统端口定义,如表 1-1 所示。

表 1-1 系统端口定义

名称	I/O	位宽	描述	所属模块	
sys_clk	in	1	系统时钟信号	-	
reset_n	in	1	系统复位信号	-	
trace_clk	out	1	TPIU时钟信号	TPIU	
trace_data	out	[3:0]	TPIU数据输出信号	IFIO	
user_int_0	in	1	用户中断处理信号 0		
user_int_1	in	1	用户中断处理信号 1	NVIC	
user_int_2	in	1	用户中断处理信号 2	INVIC	
user_int_3	in	1	用户中断处理信号 3		

IPUG932-1.2 3(33)

1.3 系统端口

名称	I/O	位宽	描述	所属模块	
user_int_4	in	1	用户中断处理信号 4		
user_int_5	in	1	用户中断处理信号 5		
gpio	inout	[15:0]	通用输入输出信号	GPIO I/O	
gpioin	in	[15:0]	通用输入信号	GPIO non-I/O	
gpioout	out	[15:0]	通用输出信号		
gpioouten	out	[15:0]	通用输出使能信号		
uart0_rxd	in	1	UART0接收信号	LIADTO	
uart0_txd	out	1	UART0发送信号	- UARTO	
uart1_rxd	in	1	UART1接收信号	- UART1	
uart1_txd	out	1	UART1发送信号	UARTI	
scl	inout	1	I ² C串行时钟信号	I ² C Master I/O	
sda	inout	1	I ² C串行数据信号	- 1 C Master I/O	
sclin	in	1	I ² C串行时钟输入信号		
sclout	out	1	I ² C串行时钟输出信号		
sclouten out		1	I ² C串行时钟输出使能信号	I ² C Master non-I/O	
sdain	in	1	I ² C串行数据输入信号	TC Master non-I/O	
sdaout	out	1	I ² C串行数据输出信号		
sdaouten	out	1	I ² C串行数据输出使能信号		
mosi	out	1	SPI主设备输出/从设备输入信号		
miso	in	1	SPI主设备输入/从设备输出信号	1	
sclk out		1	SPI时钟信号	- SPI Master	
nss	out	1	SPI从设备选择信号		
rtc_src_clk	in	1	RTC时钟信号	RTC	
master_hclk	out	1	Master时钟信号		
master_hrst	out	1	Master复位信号		
master_hsel	out	1	Master选择信号		
master_haddr out		[31:0]	Master地址信号		
master_htrans out		[1:0]	Master传输类型信号	AHB2 Master	
master_hwrite out 1		1	Master读写方向信号	1	
master_hsize	naster_hsize out [2:0]		Master传输数据Size信号		
master_hburst			Master burst类型信号		
master_hprot	out	[3:0]	Master保护控制信号	<u> </u>	

IPUG932-1.2 4(33)

名称	I/O	位宽	描述	所属模块	
master_memattr	out	[1:0]	Master memattr信号		
master_exreq	out	1	Matter exreq信号		
master_hmaster	out	[3:0]	Master主机标号信号	7	
master_hwdata	out	[31:0]	Master写数据信号	7	
master_hmastlock	out	1	Master锁定标记信号		
master_hreadymux	out	1	Master hreadymux信号		
master_hauser	out	1	Master hauser信号		
master_hwuser	out	[3:0]	Master hwuser信号		
master_hrdata	in	[31:0]	Master读数据信号		
master_hreadyout	in	1	Master hreadyout信号		
master_hresp	in	1	Master传输状态信号		
master_exresp	in	1	Master exresp信号		
master_hruser	in	[2:0]	Master hruser信号		
slave_hsel	in	1	Slave选择信号		
slave_haddr	in	[31:0]	Slave地址信号		
slave_htrans	in	[1:0]	Slave传输类型信号		
slave_hwrite	in	1	Slave读写方向信号		
slave_hsize	in	[2:0]	Slave传输数据Size信号		
slave_hburst	in	[2:0]	Slave burst类型信号		
slave_hprot	in	[3:0]	Slave保护控制信号		
slave_hmaster	in	[3:0]	Slave主机标号信号		
slave_hwdata	in	[31:0]	Slave写数据信号		
slave_hmastlock	in	1	Slave锁定标记信号	AHB2 Slave	
slave_hrdata	out	[31:0]	Slave读数据信号		
slave_hready	out	1	Slave准备好信号		
slave_hresp	out	1	Slave传输状态信号		
slave_hexresp	out	1	Slave hexresp信号		
slave_hruser	out	[2:0]	Slave hruser信号		
slave_hmemattr	in	[1:0]	Slave hmemattr信号		
slave_hexreq	in	1	Slave hexreq信号		
slave_hauser	in	1	Slave hauser信号		
slave_hwuser	in	[3:0]	Slave hwuser信号		

IPUG932-1.2 5(33)

1.3 系统端口

名称	I/O	位宽	描述	所属模块	
master_pclk	out	1	APB2 Master时钟信号		
master_prst	out	1	APB2 Master复位信号		
master_penable	out	1	APB2 Master使能信号		
master_paddr	out	[7:0]	APB2 Master地址信号	APB2 Master	
master_pwrite	out	1	APB2 Master读写方向信号	[1-12]	
master_pwdata	out	[31:0] APB2 Master写数据信号			
master_pstrb	out	[3:0]	APB2 Master写选通信号		
master_pprot	out	[2:0]	APB2 Master保护类型信号		
master_psel1	out	1	APB2 Master [1]选择信号		
master_pready1	in	1	APB2 Master [1]准备好信号	ADDO Mostor [4]	
master_prdata1	in	[31:0]	APB2 Master [1]读数据信号	APB2 Master [1]	
master_pslverr1	in	1	APB2 Master [1]传输失败信号		
master_psel2	out	1	APB2 Master [2]选择信号		
master_pready2	in	1	APB2 Master [2]准备好信号	ADDO Mostor [2]	
master_prdata2	in	[31:0]	APB2 Master [2]读数据信号	APB2 Master [2]	
master_pslverr2	in	1	APB2 Master [2]传输失败信号		
master_psel3	out	1	APB2 Master [3]选择信号		
master_pready3	in	1	APB2 Master [3]准备好信号	ADD2 Moster [2]	
master_prdata3	in	[31:0]	APB2 Master [3]读数据信号	APB2 Master [3]	
master_pslverr3	in	1	APB2 Master[3]传输失败信号		
master_psel4	out	1	APB2 Master [4]选择信号		
master_pready4 in		1	APB2 Master [4]准备好信号	ADDO Master [4]	
master_prdata4	in	[31:0]	APB2 Master [4]读数据信号	APB2 Master [4]	
master_pslverr4	in	1	APB2 Master[4]传输失败信号		
master_psel5	out	1	APB2 Master [5]选择信号		
master_pready5	pready5 in		APB2 Master [5]准备好信号	ADDO Master [5]	
master_prdata5	in	[31:0]	APB2 Master [5]读数据信号	APB2 Master [5]	
master_pslverr5	in	1	APB2 Master[5]传输失败信号		
master_psel6	out	1	APB2 Master [6]选择信号		
master_pready6	in	1	APB2 Master [6]准备好信号	ADDO Master [C]	
master_prdata6	in	[31:0]	APB2 Master [6]读数据信号	APB2 Master [6]	
master_pslverr6	in	1	APB2 Master[6]传输失败信号		

IPUG932-1.2 6(33)

1.3 系统端口

名称	I/O	位宽	描述	所属模块	
master_psel7	out	1	APB2 Master [7]选择信号		
master_pready7	in	1	APB2 Master [7]准备好信号	- APB2 Master [7]	
master_prdata7 in		[31:0]	APB2 Master [7]读数据信号	APB2 Master [7]	
master_pslverr7	in	1	APB2 Master[7]传输失败信号		
master_psel8	out	1	APB2 Master [8]选择信号		
master_pready8	in	1	APB2 Master [8]准备好信号	ADD2 Magter [9]	
master_prdata8	in	[31:0]	APB2 Master [8]读数据信号	- APB2 Master [8]	
master_pslverr8	in	1	APB2 Master[8]传输失败信号		
master_psel9	out	1	APB2 Master [9]选择信号		
master_pready9	in	1	APB2 Master [9]准备好信号	ADD2 Master [0]	
master_prdata9 in		[31:0]	APB2 Master [9]读数据信号	APB2 Master [9]	
master_pslverr9	in	1	APB2 Master[9]传输失败信号		
master_psel10	out	1	APB2 Master [10]选择信号		
master_pready10) in 1		APB2 Master [10]准备好信号	APB2 Master [10]	
master_prdata10 in		[31:0]	APB2 Master [10]读数据信号		
master_pslverr10	in	1	APB2 Master[10]传输失败信号	1	
master_psel11	out	1	APB2 Master [11]选择信号		
master_pready11	in	1	APB2 Master [11]准备好信号	ADD2 Master [44]	
master_prdata11	in	[31:0]	APB2 Master [11]读数据信号	- APB2 Master [11]	
master_pslverr11	in	1	APB2 Master[11]传输失败信号		
master_psel12	out	1	APB2 Master [12]选择信号		
master_pready12	in	1	APB2 Master [12]准备好信号	ADD2 Moster [42]	
master_prdata12 in [31:0		[31:0]	APB2 Master [12]读数据信号	- APB2 Master [12]	
master_pslverr12	in	1	APB2 Master[12]传输失败信号		

IPUG932-1.2 7(33)

1.4 系统资源统计

1.4 系统资源统计

Gowin_EMPU(GW1NS-4C)系统资源统计,如表 1-2 所示。

表 1-2 系统资源统计

Resources	LUTs	Registers	BSRAMs	DSP Macros
MCU Core Minimum	145	116	1	0
MCU Core Default + Peripherals	468	285	8	0
MCU Core + APB SPI_Nor_Flash	1151	715	8	0
MCU Core + AHB PSRAM Memory	1804	1555	8	0
MCU Core + AHB HyperRAM Memory	1284	1103	8	0

IPUG932-1.2 8(33)

2.1 硬件环境

2 硬件设计流程

2.1 硬件环境

- DK-START-GW1NSR4C-QN48G V1.1
 GW1NSR-LV4CQN48GC7/I6
- DK-START-GW1NSR4C-QN48P V1.1
 GW1NSR-LV4CQN48PC7/I6
- DK-START-GW1NSR4C-MG64P V1.1
 GW1NSR-LV4CMG64PC7/I6

2.2 软件环境

Gowin V1.9.8Beta 及以上版本。

2.3 IP Core Generator

Gowin 云源软件的 IP Core Generator,用于配置和产生Gowin_EMPU(GW1NS-4C)硬件设计。

2.4 Programmer

Gowin 下载软件 Programmer, 支持 Gowin_EMPU(GW1NS-4C) 硬件设计码流下载。

Programmer 软件使用方法,请参考 <u>SUG502</u>,Gowin Programmer 用户指南。

IPUG932-1.2 9(33)

2.5 设计流程

2.5 设计流程

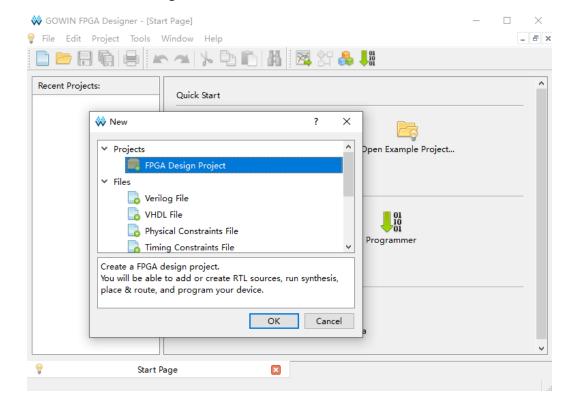
Gowin_EMPU(GW1NS-4C)硬件设计流程:

● IP Core Generator 配置和产生 Gowin_EMPU(GW1NS-4C)硬件设计, 导入当前工程;

- 实例化 Gowin_EMPU(GW1NS-4C),导入用户应用设计,连接用户应用设计与 Gowin_EMPU Top Module;
- 物理约束和时序约束;
- 使用综合工具 GowinSynthesis 综合,产生综合后网表文件;
- 使用布局布线工具 Place & Route 布局布线,产生码流文件;
- 使用下载工具 Programmer, 下载码流到 GW1NS-4C/GW1NSR-4C/GW1NSER-4C。

IPUG932-1.2 10(33)

3工程模板 3.1 工程创建

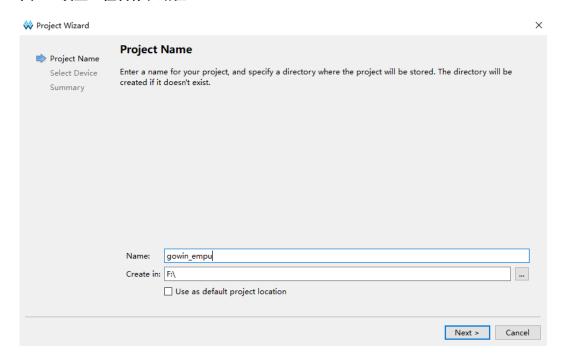

3 工程模板

3.1 工程创建

3.1.1 创建工程

双击打开 Gowin 云源软件,选择菜单栏 "File > New... > FPGA Design Project",如图 3-1 所示。

图 3-1 创建 FPGA Design 工程


IPUG932-1.2 11(33)

3工程模板 3.1 工程创建

3.1.2 设置工程名称和路径

输入工程名称,选择工程路径,如图 3-2 所示。

图 3-2 设置工程名称和路径

3.1.3 选择器件

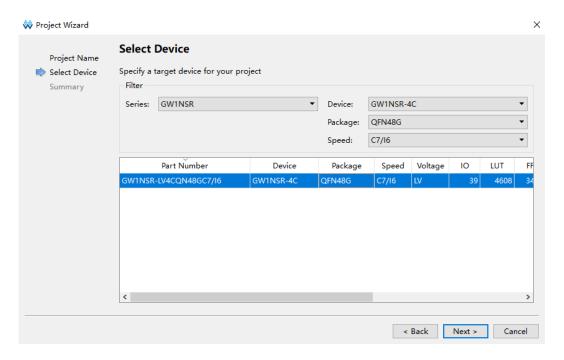
选择 Series、Device、Package、Speed 和 Part Number,如图 3-3 所示。

以软件开发工具包 DK_START_GW1NSR4C_QN48G_V1.1 参考设计为例,如下所示。

Series: GW1NSR

Device: GW1NSR-4C

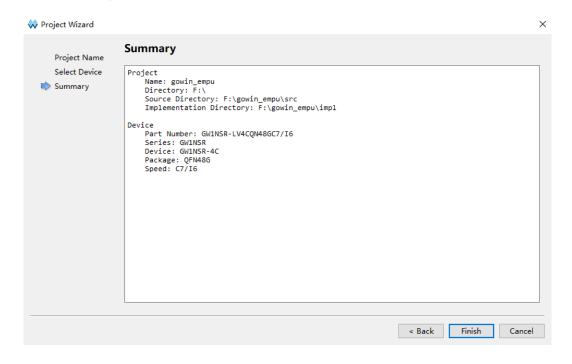
Package: QFN48G


Speed: C7/I6

Part Number: GW1NSR-LV4CQN48GC7/I6

IPUG932-1.2 12(33)

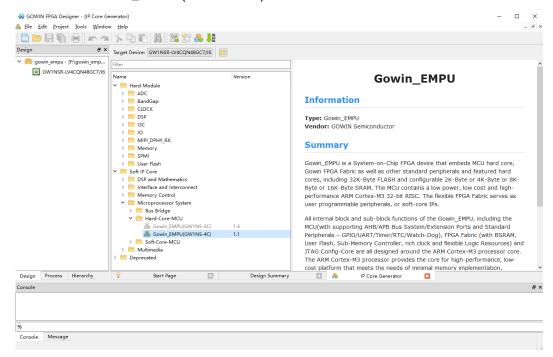
3工程模板 3.1 工程创建


图 3-3 选择器件

3.1.4 完成工程创建

完成工程创建,如图 3-4 所示。

图 3-4 完成工程创建


IPUG932-1.2 13(33)

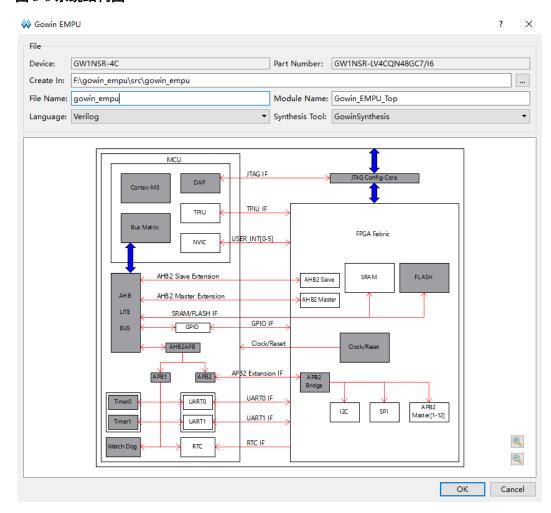
3.2 硬件设计

使用 IP Core Generator 产生 Gowin_EMPU(GW1NS-4C)硬件设计。

选择 "Soft IP Core > Microprocessor System > Hard-Core-MCU > Gowin_EMPU(GW1NS-4C) 1.1", 如图 3-5 所示。

图 3-5 选择 Gowin_EMPU(GW1NS-4C)

打开 Gowin_EMPU(GW1NS-4C)配置选项,系统结构如图 3-6 所示。 其中置灰模块是系统默认,用户不可以配置;未置灰模块,请双击 打开该模块进行配置。


用户可以选择配置的模块,包括:

- TPIU
- NVIC: 6 个用户中断处理信号 USER INT0~5
- AHB2 Slave: FPGA 内核系统可以扩展 AHB2 Slave 用户设备
- AHB2 Master: FPGA 内核系统可以扩展 AHB2 Master 用户设备
- GPIO
- UART0 和 UART1
- RTC

IPUG932-1.2 14(33)

- SRAM:可以配置为 2KB、4KB、8KB 或 16KB,默认为 16KB
- I2C: FPGA 内核系统集成 I2C Master
- SPI: FPGA 内核系统集成 SPI Master
- APB2 Master[1-12]: FPGA 内核系统可以扩展 12 个 APB2 Master 用户设备

图 3-6 系统结构图

Gowin_EMPU(GW1NS-4C),系统配置选项,如表 3-1 所示。

表 3-1 系统配置选项

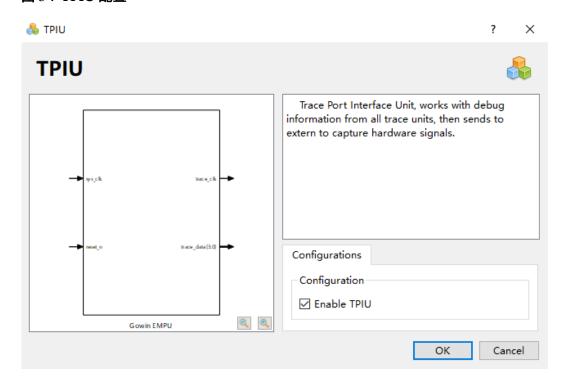
配置选项	描述
Enable TPIU	使能 TPIU,默认关闭。
Enable USER_INT_0	使能用户中断处理信号[0],默认关闭。
Enable USER_INT_1	使能用户中断处理信号[1],默认关闭。
Enable USER_INT_2	使能用户中断处理信号[2],默认关闭。
Enable USER_INT_3	使能用户中断处理信号[3],默认关闭。

IPUG932-1.2 15(33)

3工程模板 3.2 硬件设计

配置选项	描述		
Enable USER_INT_4	使能用户中断处理信号[4],默认关闭。		
Enable USER_INT_5	使能用户中断处理信号[5],默认关闭。		
Enable GPIO	使能 GPIO,默认关闭。		
Enable GPIO I/O	使能 GPIO inout 类型端口,默认打开。		
Enable UART0	使能 UARTO,默认关闭。		
Enable UART1	使能 UART1,默认关闭。		
Enable RTC	使能 RTC,默认关闭。		
Enable AHB2 Master	使能 AHB2 Master 用户扩展接口,默认关闭。		
Enable AHB2 Slave	使能 AHB2 Slave 用户扩展接口,默认关闭。		
Enable I ² C	使能 I ² C Master,默认关闭。		
Enable I ² C I/O	使能 I ² C inout 类型端口,默认打开。		
Enable SPI	使能 SPI Master,默认关闭。		
Enable APB2 Master 1	使能 APB2 Master [1]用户扩展接口,默认关闭。		
Enable APB2 Master 2	使能 APB2 Master [2]用户扩展接口,默认关闭。		
Enable APB2 Master 3	使能 APB2 Master [3]用户扩展接口,默认关闭。		
Enable APB2 Master 4	使能 APB2 Master [4]用户扩展接口,默认关闭。		
Enable APB2 Master 5	使能 APB2 Master [5]用户扩展接口,默认关闭。		
Enable APB2 Master 6	使能 APB2 Master [6]用户扩展接口,默认关闭。		
Enable APB2 Master 7	使能 APB2 Master [7]用户扩展接口,默认关闭。		
Enable APB2 Master 8	使能 APB2 Master [8]用户扩展接口,默认关闭。		
Enable APB2 Master 9	使能 APB2 Master [9]用户扩展接口,默认关闭。		
Enable APB2 Master 10	使能 APB2 Master [10]用户扩展接口,默认关闭。		
Enable APB2 Master 11	使能 APB2 Master [11]用户扩展接口,默认关闭。		
Enable APB2 Master 12	使能 APB2 Master [12]用户扩展接口,默认关闭。		
SRAM Size	配置数据存储器 Size,可以配置为 2/4/8/16KB,默认 16KB。		

IPUG932-1.2 16(33)


3工程模板 3.2 硬件设计

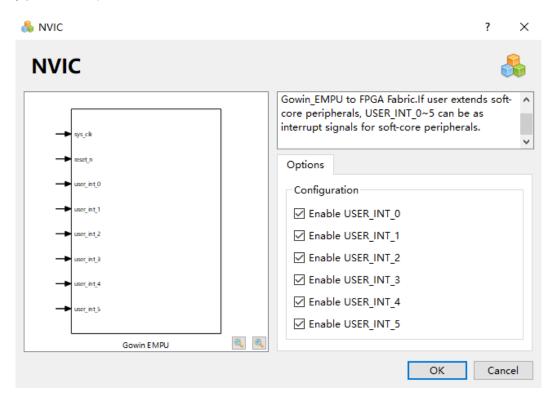
3.2.1 TPIU 配置

双击打开 TPIU,可以选择配置 TPIU,如图 3-7 所示。

如果选择 Enable TPIU,则 Gowin_EMPU(GW1NS-4C)支持 TPIU, 默认关闭。

图 3-7 TPIU 配置

3.2.2 NVIC 配置

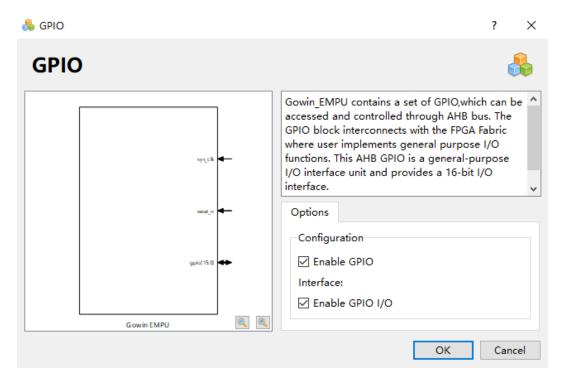

双击打开 NVIC,可以选择配置用户中断处理信号 USER_INT_0~5,作为 FPGA 内核系统用户扩展外部设备中断处理功能的中断处理信号,如图 3-8 所示。

- 如果选择 Enable USER_INT_0,则 Gowin_EMPU(GW1NS-4C)支持用户中断处理信号[0],默认关闭。
- 如果选择 Enable USER_INT_1,则 Gowin_EMPU(GW1NS-4C)支持用户中断处理信号[1],默认关闭。
- 如果选择 Enable USER_INT_2,则 Gowin_EMPU(GW1NS-4C)支持用户中断处理信号[2],默认关闭。
- 如果选择 Enable USER_INT_3,则 Gowin_EMPU(GW1NS-4C)支持用户中断处理信号[3],默认关闭。
- 如果选择 Enable USER_INT_4,则 Gowin_EMPU(GW1NS-4C)支持用户中断处理信号[4],默认关闭。

IPUG932-1.2 17(33)

● 如果选择 Enable USER_INT_5,则 Gowin_EMPU(GW1NS-4C)支持用户中断处理信号[5],默认关闭。

图 3-8 NVIC 配置

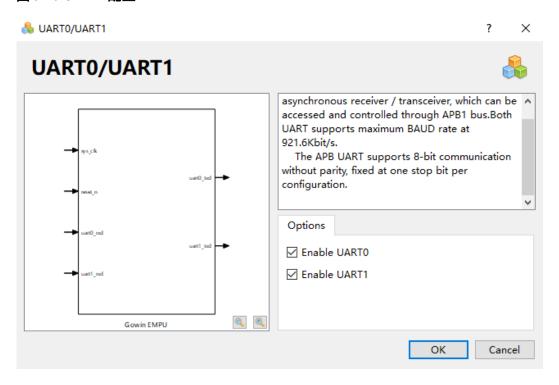

3.2.3 GPIO 配置

双击打开 GPIO,可以选择配置 GPIO,如图 3-9 所示。

- 如果选择 Enable GPIO,则 Gowin_EMPU(GW1NS-4C)支持 GPIO,默 认关闭。
- 如果已经选择 Enable GPIO,则可以配置 GPIO 端口类型。
- 如果选择 Enable GPIO I/O,则 GPIO 支持 inout 类型端口,默认支持。

IPUG932-1.2 18(33)

图 3-9 GPIO 配置

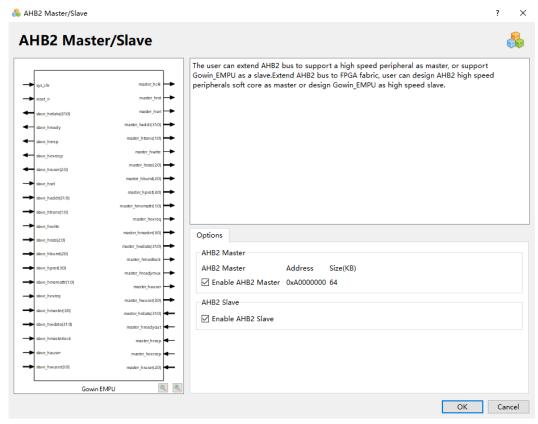

3.2.4 UART 配置

双击打开 UART0 或 UART1,可以选择配置 UART0 和 UART1,如 图 3-10 所示。

- 如果选择 Enable UART0,则 Gowin_EMPU(GW1NS-4C)支持 UART0, 默认关闭。
- 如果选择 Enable UART1,则 Gowin_EMPU(GW1NS-4C)支持 UART1, 默认关闭。

IPUG932-1.2 19(33)

图 3-10 UART 配置

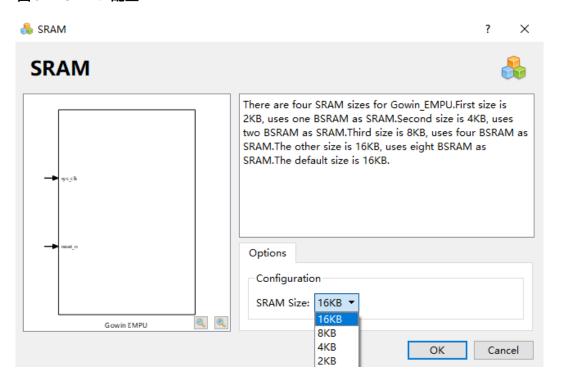

3.2.5 AHB2 Master/Slave 配置

双击打开 AHB2 Master 或 AHB2 Slave,可以选择配置 AHB2 Master 和 AHB2 Slave,如图 3-11 所示。

- 如果选择 Enable AHB2 Master,则 Gowin_EMPU(GW1NS-4C)支持 AHB2 Master,默认关闭。
- 如果选择 Enable AHB2 Slave,则 Gowin_EMPU(GW1NS-4C)支持 AHB2 Slave,默认关闭。
- AHB2 Master 用户扩展外部设备的基地址映射: 0xA0000000。

IPUG932-1.2 20(33)

图 3-11 AHB2 Master/Slave 配置

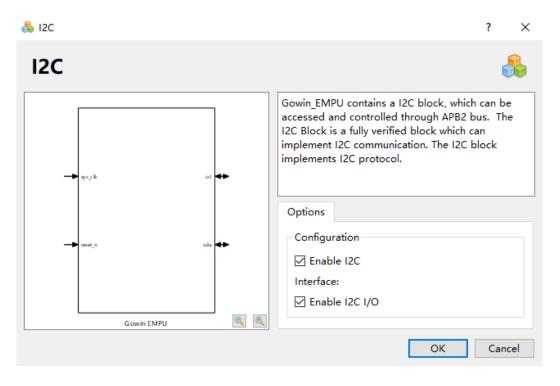


3.2.6 SRAM 配置

双击打开 SRAM,可以选择配置 SRAM Size,如图 3-12 所示。 默认 SRAM Size 为 16KB,可以选择配置 SRAM Size 为 2KB、4KB、 8KB 或 16KB。

IPUG932-1.2 21(33)

图 3-12 SRAM 配置

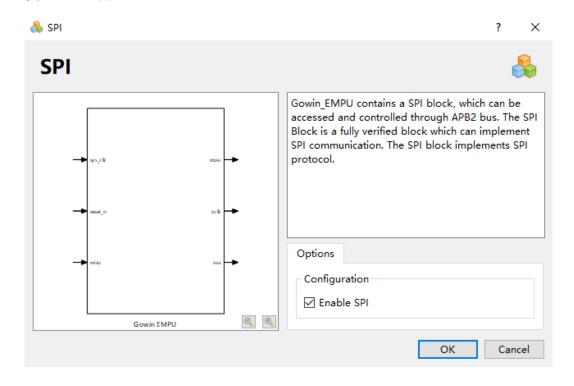

3.2.7 I²C 配置

双击打开 "I2C", 可以选择配置 I²C Master, 如图 3-13 所示。

- 如果选择"Enable I2C",则 Gowin_EMPU(GW1NS-4C)支持 I²C Master, 默认关闭。
- 如果已经选择 "Enable I2C",则可以配置 I²C Master 端口类型。
- 如果选择 "Enable I2C I/O",则 I²C Master 支持 inout 类型端口,默认支持。

IPUG932-1.2 22(33)

图 3-13 I2C 配置



3.2.8 SPI 配置

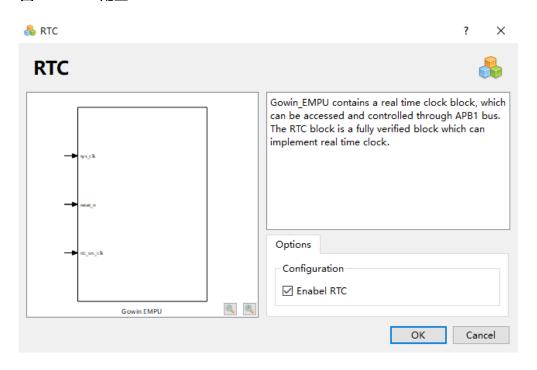
双击打开 SPI,可以选择配置 SPI Master,如图 3-14 所示。

如果选择 Enable SPI,则 Gowin_EMPU(GW1NS-4C)支持 SPI Master,默认关闭。

图 3-14 SPI 配置

IPUG932-1.2 23(33)

3 工程模板 3.2 硬件设计


3.2.9 RTC 配置

双击打开 RTC,可以选择配置 RTC,如图 3-15 所示。

如果选择 Enable RTC,则 Gowin_EMPU(GW1NS-4C)支持 RTC,默认关闭。

端口 rtc_src_clk 接入 3.072MHz 时钟输入,RTC 内部分频为 1Hz。

图 3-15 RTC 配置

3.2.10 APB2 Master 配置

双击打开 APB2 Master[1-12],可以选择配置 APB2 Master [1-12], 如图 3-16 所示。


- 如果选择 Enable APB2 Master 1,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [1],默认关闭。
- 如果选择 Enable APB2 Master 2,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [2],默认关闭。
- 如果选择 Enable APB2 Master 3,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [3],默认关闭。
- 如果选择 Enable APB2 Master 4,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [4],默认关闭。
- 如果选择 Enable APB2 Master 5,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [5],默认关闭。

IPUG932-1.2 24(33)

● 如果选择 Enable APB2 Master 6,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [6],默认关闭。

- 如果选择 Enable APB2 Master 7,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [7],默认关闭。
- 如果选择 Enable APB2 Master 8,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [8],默认关闭。
- 如果选择 Enable APB2 Master 9,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [9],默认关闭。
- 如果选择 Enable APB2 Master 10,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [10],默认关闭。
- 如果选择 Enable APB2 Master 11,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [11],默认关闭。
- 如果选择 Enable APB2 Master 12,则 Gowin_EMPU(GW1NS-4C)支持 APB2 Master [12],默认关闭。

图 3-16 APB2 Master[1-12]配置

APB2 Master [1-12]用户扩展外部设备的基地址映射,如表 3-2 所示。

IPUG932-1.2 25(33)

表 3-2 APB2 Master [1-12]基地址映射

APB2 Master	Address	Size(Byte)
1	0x40002400	256
2	0x40002500	256
3	0x40002600	256
4	0x40002700	256
5	0x40002800	256
6	0x40002900	256
7	0x40002A00	256
8	0x40002B00	256
9	0x40002C00	256
10	0x40002E00	256
11	0x40002E00	256
12	0x40002F00	256

3.2.11 AHB PSRAM Memory Interface

如果选用器件 GW1NSR-4C MG64P,则 Gowin_EMPU(GW1NS-4C)支持外部设备 AHB PSRAM Memory Interface。

软件开发工具包以参考设计方式,提供外部设备 AHB PSRAM Memory Interface。

硬件设计流程

- IPCore Generator 配置与产生 Gowin_EMPU(GW1NS-4C), 使能 AHB2 Master 用户扩展接口
- IPCore Generator 配置与产生 PSRAM Memory Interface
 - Memory Clock 100MHz
 - 其它选项默认配置
- 设计实现 AHB 总线接口的 AHB PSRAM Memory Interface
- 实例化 Gowin_EMPU(GW1NS-4C) Top Module 和 AHB PSRAM Memory Interface Top Module
- 连接 Gowin_EMPU(GW1NS-4C)与 AHB PSRAM Memory Interface 的 AHB 总线接口

参考设计

● 硬件参考设计

IPUG932-1.2 26(33)

3工程模板 3.2 硬件设计

Gowin_EMPU\ref_design\FPGA_RefDesign\DK_START_GW1NS R4C_MG64P_V1.1\gowin_empu_psram

- 软件参考设计
 - Gowin_EMPU\ref_design\MCU_RefDesign\Keil_RefDesign\psram
 - Gowin_EMPU\ref_design\MCU_RefDesign\GMD_RefDesign\cm3 _psram

3.2.12 AHB HyperRAM Memory Interface

如果选用器件 GW1NSR-4C/GW1NSER-4C QN48P,则 Gowin_EMPU(GW1NS-4C)支持外部设备 AHB HyperRAM Memory Interface。

软件开发工具包以参考设计方式,提供外部设备 AHB HyperRAM Memory Interface。

硬件设计流程

- IPCore Generator 配置与产生 Gowin_EMPU(GW1NS-4C), 使能 AHB2 Master 用户扩展接口
- IPCore Generator 配置与产生 HyperRAM Memory Interface Embedded
 - Memory Clock 100MHz
 - 其它选项默认配置
- 设计实现 AHB 总线接口的 AHB HyperRAM Memory Interface
- 实例化 Gowin_EMPU(GW1NS-4C) Top Module 和 AHB HyperRAM Memory Interface Top Module
- 连接 Gowin_EMPU(GW1NS-4C)与 AHB HyperRAM Memory Interface 的 AHB 总线接口

参考设计

- 硬件参考设计
 - Gowin_EMPU\ref_design\FPGA_RefDesign\DK_START_GW1NSR4C _QN48P_V1.1\gowin_empu_hyperram
- 软件参考设计
 - Gowin_EMPU\ref_design\MCU_RefDesign\Keil_RefDesign\hyper _ram
 - Gowin_EMPU\ref_design\MCU_RefDesign\GMD_RefDesign\cm3 _hyper_ram

IPUG932-1.2 27(33)

3.3 用户设计

3.2.13 APB SPI Nor Flash

如果选用器件 GW1NSR-4C/GW1NSER-4C QN48G,则 Gowin_EMPU(GW1NS-4C)支持外部设备 APB SPI_Nor_Flash。

软件开发工具包以参考设计方式,提供外部设备 APB SPI_Nor_Flash。

硬件设计流程

- IPCore Generator 配置与产生 Gowin_EMPU(GW1NS-4C), 使能 APB2 Master [1]用户扩展接口
- 设计实现 SPI_Nor_Flash 控制器
- 设计实现 APB 总线接口的 APB SPI_Nor_Flash
- 实例化 Gowin_EMPU(GW1NS-4C) Top Module 和 APB SPI_Nor_Flash Top Module
- 连接 Gowin_EMPU(GW1NS-4C)与 APB SPI_Nor_Flash 的 APB 总线接口

参考设计

- 硬件参考设计
 Gowin_EMPU\ref_design\FPGA_RefDesign\DK_START_GW1NSR4C
 _QN48G_V1.1\gowin_empu_spinorflash
- 软件参考设计
 - Gowin_EMPU\ref_design\MCU_RefDesign\Keil_RefDesign\spi_no
 r flash
 - Gowin_EMPU\ref_design\MCU_RefDesign\GMD_RefDesign\cm3_spi_nor_flash

3.3 用户设计

- 完成 Gowin_EMPU(GW1NS-4C)配置后,产生 Gowin_EMPU(GW1NS-4C)硬件设计
- 实例化 Gowin_EMPU(GW1NS-4C) Top Module
- 导入用户应用设计,连接 Gowin_EMPU(GW1NS-4C) Top Module 与用户应用设计,形成完整的 RTL 设计

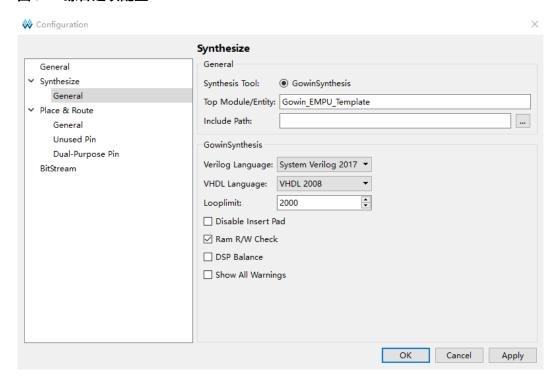
IPUG932-1.2 28(33)

3 工程模板 3.4 约束

3.4 约束

完成用户 RTL 设计后,根据使用的开发板和需要输入输出的 IO,产生物理约束文件。

根据时序要求,产生时序约束文件。

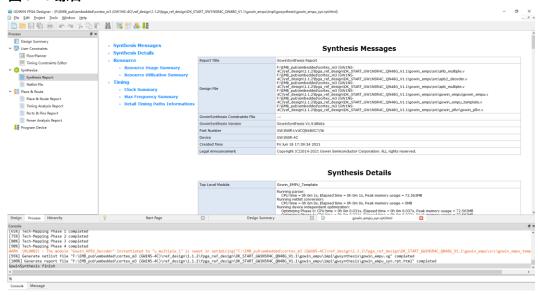

物理约束和时序约束的产生方法,请参考 <u>SUG101</u>,Gowin 设计约束指南。

3.5 综合选项配置

综合选项配置,如图 3-17 所示。

- 根据设计中的实际顶层模块名称,配置 Top Module/Entity;
- 根据设计中的实际文件引用路径,配置 Include Path;
- 配置 Verilog Language,如 System Verilog 2017。

图 3-17 综合选项配置

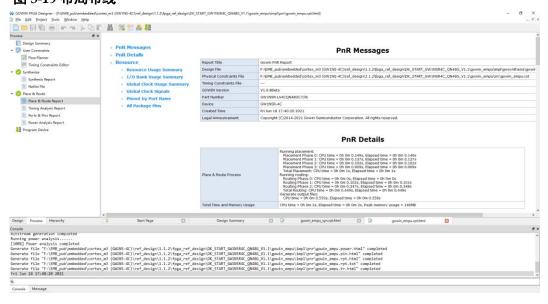

IPUG932-1.2 29(33)

3.6 综合

3.6 综合

运行 Gowin 云源软件的综合工具 GowinSynthesis, 完成 RTL 设计的综合,产生综合后的网表文件,如图 3-18 所示。

图 3-18 综合



综合工具的使用方法,请参考 SUG100, Gowin 云源软件用户指南。

3.7 布局布线

运行 Gowin 云源软件的布局布线工具 Place & Route, 完成布局布线, 产生码流文件, 如图 3-19 所示。

图 3-19 布局布线

布局布线工具使用方法,请参考 SUG100, Gowin 云源软件用户指

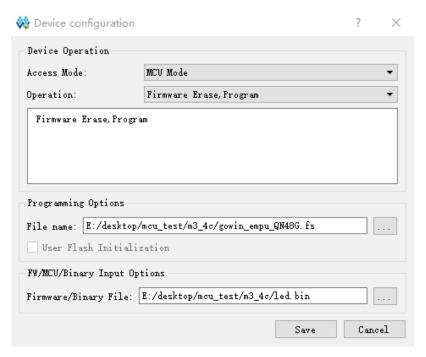
IPUG932-1.2 30(33)

3.8 下载

南。

3.8 下载

使用 Gowin 云源软件的 Programmer 下载软件,下载硬件设计码流文件。


在 Gowin 云源软件中或安装路径下,打开下载软件 Programmer。

单击 Programmer 菜单栏 "Edit > Configure Device"或工具栏 "Configure Device"(圖), 打开 Device configuration。

如果是器件 GW1NS-4C/GW1NSR-4C,下载选项配置,如图 3-20 所示。

- Access Mode 下拉列表,选择"MCU Mode"选项。
- Operation 下拉列表,选择"Firmware Erase, Program"选项或"Firmware Erase, Program, Verify"选项。

图 3-20 器件 GW1NS-4C/GW1NSR-4C 下载选项配置

如果是器件 GW1NSER-4C, 下载选项配置, 如图 3-21 所示。

- Access Mode 下拉列表,选择 "SecureFPGA Mode"选项。
- Operation 下拉列表,选择"Firmware Erase, Program Securely"选项。

IPUG932-1.2 31(33)

3 工程模板 3.8 下载

图 3-21 器件 GW1NSER-4C 下载选项配置

- "Programming Options > File name"选项,导入 Gowin_EMPU(GW1NS-4C)硬件设计码流文件。
- 单击 "Save", 完成下载选项配置。

注!

"FW/MCU/Binary Input Options > Firmware/Binary File"选项,导入Gowin_EMPU(GW1NS-4C)软件编程设计二进制 BIN 文件,请参考 <u>IPUG928</u>,Gowin_EMPU(GW1NS-4C) IDE 软件参考手册。

完成 Device configuration 后,单击 Programmer 工具栏 "Program/Configure"(事),完成 Gowin_EMPU(GW1NS-4C)的下载。

下载软件 Programmer 使用方法,请参考 <u>SUG502</u>, Gowin Programmer 用户指南。

IPUG932-1.2 32(33)

4 参考设计

Gowin_EMPU(GW1NS-4C)提供硬件参考设计,通过链接获取如下参考设计: <u>cdn.gowinsemi.com.cn/Gowin_EMPU_V1.1.zip</u>:

Gowin_EMPU\ref_design\FPGA_RefDesign

IPUG932-1.2 33(33)

