

Gowin FPGA 产品 JTAG 配置手册

TN653-1.07, 2019-11-18

版权所有© 2019 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

W.I. IH.O.				
日期	版本	说明		
2017/04/13	1.00	初始版本。		
2017/04/24	1.01	完善 JTAG 编程内置 Flash 流程。		
2017/06/05	1.02	增加擦除 GW1N-1 内部 Flash 流程。		
2017/07/28	1.03	增加擦除 GW1N-2/4/6/9,GW1NZ-1 内部 Flash 流程。		
2017/10/22	1.04	完善各配置/编程/读取流程相关描述信息。		
2018/08/02	1.05	更新 GW1N-4 Background Programming 流程图及 Transfer JTAG Instrction Sample & Extest 流程图等。		
2018/11/15	1.06	增加 GW1NZ、GW1NS 的 status code。		
2019/11/18	1.07	● 增加 GW1NZ-1 相关描述;● 完善表 2-2 Gowin FPGA IDCODE。		

i

目录

目	录	i
冬	目录	. iii
表	目录	. iv
1	关于本手册	1
	1.1 手册内容	
	1.2 适用产品	
	1.3 相关文档	1
	1.4 术语、缩略语	2
	1.5 技术支持与反馈	2
2	配置和烧录(Configuration&Programming)	3
	2.1 JTAG 配置模式	
	2.2 配置流程	
	2.2.1 JTAG 引脚定义	5
	2.2.2 TAP 状态机	5
	2.2.3 TAP 复位	5
	2.2.4 指令寄存器和数据寄存器	6
	2.2.5 读取 ID CODE 实例	7
	2.2.6 配置 SRAM 流程	9
	2.2.7 读取 SRAM 的流程	. 12
	2.2.8 擦除内部 Flash	. 14
	2.2.9 编程内部 Flash 流程	. 18
	2.2.10 读取内部 Flash 流程	. 22
	2.2.11 背景烧录(Background Programming)	. 25
	2.2.12 编程外部 Flash	. 27
	2.2.13 读取 Status Register 0x41	. 31
	2.2.14 读取 User Code 0x13	. 32
	2.2.15 重加载 0x3C	. 32
	2.2.16 擦除 SRAM 0x15	. 32

3	例程文件	3:	3
J	レジリエス・ロ	 ,,	•

TN653-1.07 ii

图目录

图:	2-1 JTAG 配置模式连接示意图	4
图:	2-2 TAP 状态机	5
图:	2-3 指令寄存器访问时序	6
图:	2-4 数据寄存器访问时序	6
图:	2-5 读取 ID Code 状态机流程图	8
图:	2-6 读取 ID Code 指令-0x11 访问时序	8
图:	2-7 读取 ID Code 数据寄存器访问时序	8
图:	2-8 配置 SRAM 流程	10
图:	2-9 Tansfer Configuration Data 过程示意	11
图:	2-10 读取 SRAM 的流程	13
图:	2-11 擦除 GW1N-2(B)/4(B)/6/9,GW1NZ-1 内部 Flash 擦除流程	15
图:	2-12 擦除 GW1N-1(S)内部 Flash 流程	17
图:	2-13 编程内部 Flash 流程图	19
图:	2-14 X-page 编程流程图	21
图:	2-15 Y-page 编程流程图	22
图:	2-16 读取内部 Flash 流程图	23
图:	2-17 读取一个 Y-page 的过程	24
图:	2-18 GW1N-4 Background Programming 流程图	25
图:	2-19 Transfer JTAG Instrction Sample & Extest 流程图	26
图:	2-20 JTAG 接口编程外部 Flash 连接示意图	27
图:	2-21 采用 config-mode[2:0]=011 模式编程 SPI Flash 流程示意图	28
图:	2-22 GW2A 系列 JTAG 模拟 SPI 发送 0x06 指令时序图	28
图:	2-23 GW1N 系列 JTAG 模拟 SPI 发送 0x06 指令时序图	29
图:	2-24 采用 Boundary Scan 模式编程 SPI Flash 流程示意图	30

TN653-1.07 iii

表目录

表 1-1 术语、缩略语	. 2
表 2-1 JTAG 配置模式管脚定义	. 3
表 2-2 Gowin FPGA IDCODE	. 7
表 2-3 发送指令过程中 TDI 和 TMS 的值变化	. 7
表 2-4 器件 SRAM 地址数量和地址长度	. 12
表 2-5 JTAG 的 TCK 频率要求	. 14
表 2-6 Readback-pattern / Autoboot-pattern	. 18
表 2-7 管脚状态	. 29
表 2-8 Status Register 含 ¥	31

1 关于本手册 1.1 手册内容

1 关于本手册

1.1 手册内容

本手册主要介绍 Gowin FPGA 产品的 JTAG 配置及烧录相关信息,包含 JTAG 配置模式、配置流程及相关例程文件。

1.2 适用产品

本手册中描述的信息适用于所有高云半导体器件。

1.3 相关文档

阅读本手册前,请登录高云半导体网站 <u>www.gowinsemi.com.cn</u>参阅以下相关手册,了解 JTAG 1149.1 配置模式相关介绍:

Gowin FPGA 产品编程配置手册

TN653-1.07 1(33)

1.4 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
FS file	Fuses file	包含配置数据的 ASCII 文件
Configuration	Configuration	配置 FPGA SRAM 区域的过程
Configuration Data	Configuration Data	配置 FPGA SRAM 的数据
Bitstream	Bitstream Data	配置 FPGA SRAM 的数据
Configuration Mode	Configuration Mode	配置模式,决定 Configuration Data 源
EFlash/EmbFlash	Embedded Flash Memory	FPGA 内置 Flash 存储器
Internal Flash	Internal Flash Memory	同 Embedded Flash
Programming	Programming	将 Configuration Data 烧录到 Embedded Flash或 External Flash存储 器的过程
Edit Mode	Edit Mode	FPGA 处于 Configuration 或 Programming 所在模式
User Mode	User Mode	FPGA 在 Configuration 或 Programming 完成后,并且逻辑功能执行的模式
LSB	Least Significant Bit	最低有效位 (优先)
MSB	Most Significant Bit	最高有效位 (优先)
TAP	Test Access Port	测试访问口
Security Bit	Security Bit	安全位(使 SRAM 回读永为高电平)
Bscan	Boundary Scan	边界扫描测试技术

1.5 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系。

网址: <u>www.gowinsemi.com.cn</u>

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

TN653-1.07 2(33)

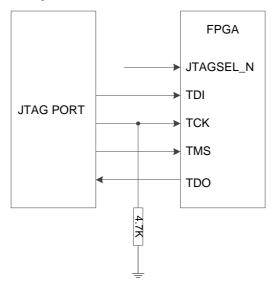
2 配置和烧录(Configuration&Programming)

2.1 JTAG 配置模式

Gowin FPGA 产品的 JTAG 配置模式符合 IEEE1149.1 边界扫描标准。

JTAG 配置模式是将比特数据下载到 Gowin FPGA 产品的 SRAM 中, 掉电后配置数据丢失。JTAG 配置模式的相关管脚如表 2-1 所示。

表 2-1 JTAG 配置模式管脚定义


管脚名称	I/O 类型	说明
JTAGSEL_N ¹	I, 内部弱上拉	将 JTAG 管脚从 GPIO 恢复为配置管脚,低电平有效
TCK ²	I	JTAG 串行时钟输入
TMS	I,内部弱上拉	JTAG 串行模式输入
TDI	I,内部弱上拉	JTAG 串行数据输入
TDO	0	JTAG 串行数据输出

注!

- [1]只有当 JTAG 管脚设置为 RECOVERY 状态并且器件完成启动过程后, JTAGSEL_N 信号方有效;
- [2]TCK 信号需在 PCB 上连接 4.7K 下拉电阻。

TN653-1.07 3(33)

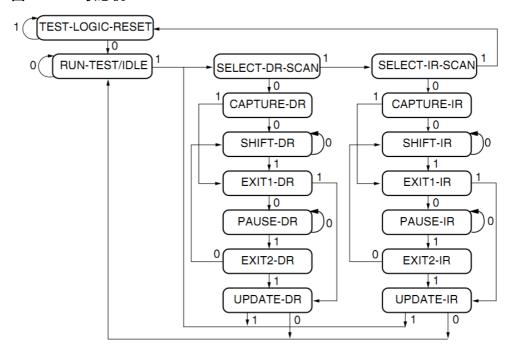
图 2-1 JTAG 配置模式连接示意图

注!

- 对于 JTAGSEL_N 未封装出的器件,用户在调试 JTAG 管脚复用的案例时,建议上电前将 MODE 值设置为非自动配置的模式(自启动、双启动和 MSPI)避免其他比特流数据影响配置过程,用户上电后手动进行 JTAG 配置后,器件进入用户模式,JTAG 管脚变为 GPIO;
- JTAG 配置模式时钟频率上限不应高于 25MHz。

TN653-1.07 4(33)

2.2 配置流程


2.2.1 JTAG 引脚定义

- TCK:测试时钟输入。在 TCK 的上升沿采样 TMS 和 TDI 的数据,在时钟的下降沿将数据输出至 TDO;
- TMS:测试模式选择,TMS用来设置JTAG口处于某种特定的测试模式;
- TDI: 测试数据输入,数据通过 TDI 输入 JTAG 口;
- TDO:测试数据输出,数据通过 TDO 从 JTAG 口输出。

2.2.2 TAP 状态机

测试访问口状态机旨在选择指令寄存器或数据寄存器,使其连接至 TDI和 TDO 之间。一般来说,指令寄存器用于选择需扫描的数据寄存器,在状态机框图中,位于箭头一侧的数字表示 TCK 变高时 TMS 的逻辑状态,如图 2-2 所示。

图 2-2 TAP 状态机

2.2.3 TAP 复位

通过保持 TMS 为高电平(逻辑"1")并在 TCK 端输入至少 5 个选通脉冲(变高后再变低)后,复位 TAP 逻辑,从而实现将处于其它状态的 TAP 状态机转换成测试逻辑复位状态,对 JTAG 接口和测试逻辑复位。

注!

该状态不复位 CPU 和外设。

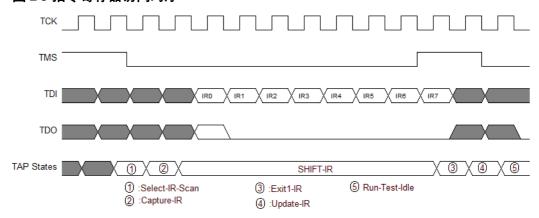
注!

- 在进入 Shift_DR 或 Shift_IR 状态时, TDO 上的数据从 TCK 的下降沿开始有效;
- 在进入 Shift DR 或 Shift IR 状态时,数据不移位;
- 在离开 Shift_DR 或 Shift_IR 时,数据被移位;
- 最先移出的是数据的最低位 LSB;

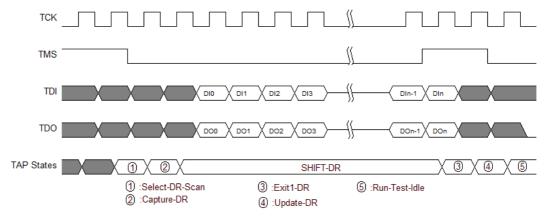
TN653-1.07 5(33)

一旦复位,所有指令将被重置或失效。

2.2.4 指令寄存器和数据寄存器


除测试逻辑复位外,状态机亦可控制两个基本操作:

- 指令寄存器(IR)扫描:
- 数据寄存器(DR)扫描。


在指令寄存器扫描操作中,在 Shift_IR 状态时,传送数据或指令给指令寄存器,发送时采用 LSB 的方式,低数据位首先被发送,回到 Run-Test-Idle 后指令即被发送完毕,如图 2-3 所示。

在数据寄存器扫描操作中,在 Shift_DR 状态时,传送数据或指令给数据寄存器,如图 2-4 所示。数据发送采用 LSB 还是 MSB 取决于具体操作。

图 2-3 指令寄存器访问时序

图 2-4 数据寄存器访问时序

注!

- 在高云半导体 GW1N(R)、GW2A(R)系列 FPGA 中,指令寄存器的总长度为 8 位;
- 根据所选择的寄存器,数据寄存器的长度可变化。

TN653-1.07 6(33)

2.2.5 读取 ID CODE 实例

ID Code 即 JEDEC ID Code,是 FPGA 器件的一个基本标识。 高云 FPGA ID Code 长度为 32 位,下表列出了高云部分 FPGA 的 ID Code。

表 2-2 Go	owin FP	'GA ID	CODE
----------	---------	--------	------

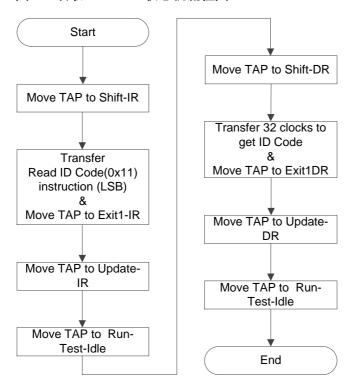
Gowin FPGA Device Family IDCODE					
	Device Part	Manufacturer ID			
Device Family	Bits 31-12	Bits 11-0	IDCODE		
	DIIS 31-12	h81B			
GW1N-1	h09002	h81B	h0900281B		
GW1N-1S	h09003	h81B	h0900381B		
GW1NZ-1	h01006	h81B	h0100681B		
GW1N(R)-2	h01001	h81B	h0100181B		
GW1N(R)-2B	h11001	h81B	h1100181B		
GW1NS-2	H03000	h81B	h0300081B		
GW1NS(R)-2C	H03001	h81B	h0300181B		
GW1NSE-2C	H03001	h81B	h0300181B		
GW1N(R)-4B	h11003	h81B	h1100381B		
GW1N(R)-6	h01004	h81B	h0100481B		
GW1N(R)-9	h11005	h81B	h1100581B		
GW2A(R)-18	h00000	h81B	h0000081B		
GW2A-55	h00002	h81B	h0000281B		

读取 FPGA 的指令是 0x11,以下步骤以读取 GW1N-4B ID Code 为例 说明 JTAG 的工作方式。

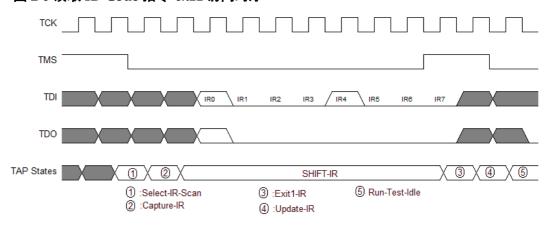
- 1. TAP 复位: TMS 置为高电平,连续发送至少 5 个时钟周期;
- 2. 移动状态机从 Test-Logic-Reset 到 Run-Test-Idle;
- 3. 移动状态机到 Shift-IR,从最低位开始发送 Read ID 指令 0x11,最高位 (最后一位)发送的同时移动状态机到 Exit1-IR,即最高位发送前 TMS 要置于高电平,表 2-3 给出 8 个时钟周期内发送 0x11 过程中 TDI 和 TMS 的值变化,时序如图 2-6 所示。

表 2-3 发送指令过程中 TDI 和 TMS 的值变化

	TCK 1	TCK 2	TCK 3	TCK 4	TCK 5	TCK 6	TCK 7	TCK 8
TDI value (0x11)	1	0	0	0	1	0	0	0
TMS value	0	0	0	0	0	0	0	1


- 4. 移动状态机,从 Exit1-IR 经过 Update-IR 后回到 Run-Test-Idle,并在 Run-Test-Idle 运行至少 3 个时钟周期;
- 5. 移动状态机到 Shift-DR,发送 32 个时钟周期,并在第 32 个时钟发送前,置 TMS 为高电平,完成 32 个时钟周期的同时,跳出 Shift-DR 到 Exit1-DR。这期间,发送 32 个时钟即可读出 32bits 数据,即为 0x0100381B,如图

TN653-1.07 7(33)


2-7 所示;

6. 移动状态回到 Run-Test-Idle。

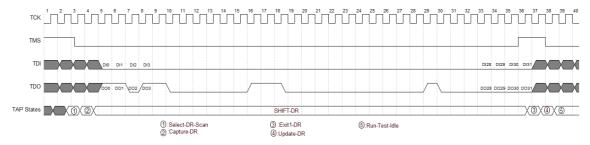
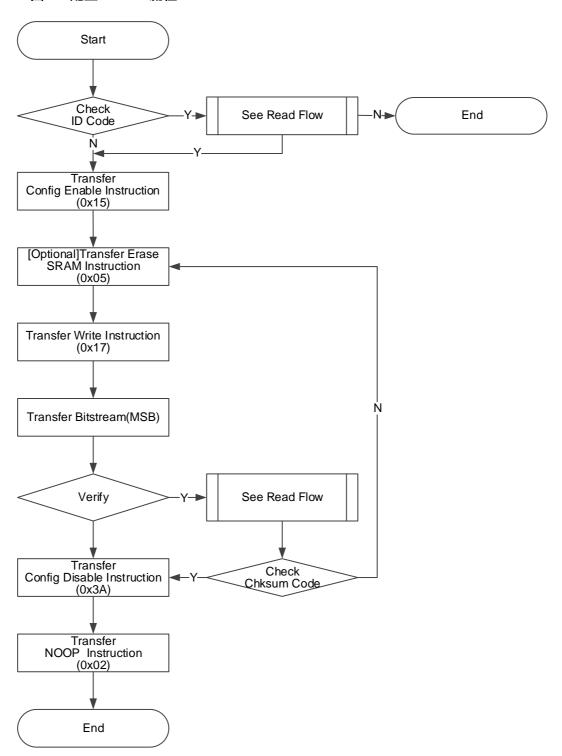

图 2-5 读取 ID Code 状态机流程图

图 2-6 读取 ID Code 指令-0x11 访问时序

图 2-7 读取 ID Code 数据寄存器访问时序

TN653-1.07 8(33)

2.2.6 配置 SRAM 流程

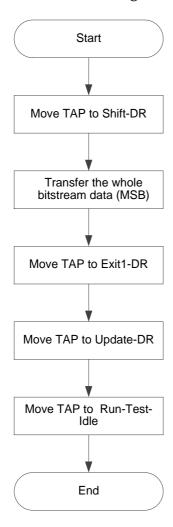

通过外部 Host 配置 FPGA SRAM,使 FPGA 实现功能,配置 SRAM 不受 Configration Mode Pins 的影响。

通过 Gowin Designer 设计软件生成数据流文件,利用 JTAG 实现 SRAM 的配置,下面介绍外部 Host 配置 SRAM 的过程,如图 2-8 所示。

- 1. 建立 JTAG 链路, TAP 复位;
- 2. 读取设备 IDCODE,检查是否匹配,此步可忽略;
- 3. 移动状态机到 Shift-IR (指令寄存器),发送 ConfigEnable 指令 0x15,并回到 Run-Test-Idle,此处时序请参考 2.2.4, 2.2.5。
- 4. 发送 Transfer Configuration Data 指令 0x17, 时序同上。
- 5. 移动状态到 Shift-DR (数据寄存器),将 Configuration Data 从最高位开始 (MSB),逐位发送,发送全部数据流文件内容;
- 6. 移动状态机回到 Run-Test-Idle 状态;
- 7. 如需回读 Configuration Data 进行校验,请参考 2.2.7 读取 SRAM 的流程:
- 8. 发送 ConfigDisabled 指令 0x3A;
- 9. 发送 Noop 指令 0x02, 结束配置流程。

TN653-1.07 9(33)

图 2-8 配置 SRAM 流程



TN653-1.07 10(33)

Tansfer Configuration Data过程(Non-JTAG Mode)

将数据流文件(Configuration Data)全部在 SHIFT-DR 中完成传送。

图 2-9 Tansfer Configuration Data 过程示意

TN653-1.07 11(33)

2.2.7 读取 SRAM 的流程

警告: SRAM 数据默认不被允许回读,

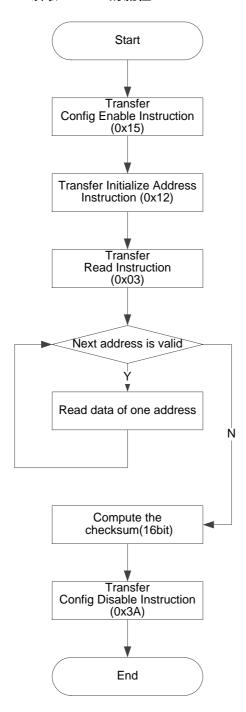
从 FPGA 的 SRAM 区域读取 SRAM 数据,首先应保证写入 SRAM 时未配置安全位(Security Bit),安全位是用于保护运行时数据,保证数据安全。安全位完成设置后,从 SRAM 取回的数据均为 1(高电平)。

数据校验采用 Checksum-16 计算方式,即取每 16 位进行累加,最后结果取低 16 位。

表 2-4 器件 SRAM 地址数量和地址长度

Device	Length of one address (bits/address)	Count of address
GW1N-1/GW1N-1S/		
GW1NZ-1	1216	274
GW1N-2/GW1N(R)-4B/ GW1NS(E/R)-2(C)	2296	494
GW1N(R)-6/GW1N(R)-9	2836	712
GW2A(R)-18	3376	1342
GW2A(R)-55(ES)	5536	2038

下面详细介绍读取流程,如图 2-10 所示。


- 1. 如果是接 2.2.6 流程,请跳转至步骤 3;
- 2. 发送 ConfigEnable 指令 0x15;
- 3. 发送 Address Initialize 指令 0x12:
- 4. 发送 SRAM Read 指令 0x03;
- 5. 移动状态机到 Shift-DR (数据寄存器),发送地址长度数量的时钟,请参见表 2-4。在发送最后一个时钟同时拉高 TMS,跳到 Exit1-DR,此时 TDO 读取相应长度的数据。最后回到 Run-Test-Idle;
- 6. 重复步骤 5,每次读取一个地址的数据,其地址会自动累加;
- 7. 发送 ConfigDisabled 指令 0x3A;
- 8. 发送 Noop 指令 0x02, 结束读取流程;
- 9. 将读取的数据从最高位开始,计算 Checksum,并与相应 FS 文件中的 Checksum 比对。相同表示数据相同。(可选项)

注!

步骤 7、8 与步骤 9 无先后顺序。

TN653-1.07 12(33)

图 2-10 读取 SRAM 的流程

TN653-1.07 13(33)

2.2.8 擦除内部 Flash

高云 GW1N 系列内置 Flash 存储器,在每次编程之前需要先擦除内置 Flash,为数据安全,内置 Flash 只提供整片擦除的操作。

当前,GW1N 系列内置 Flash 因工艺不同,对 JTAG 编程频率有不同要求,请参见表 2-5。

表 2-5 JTAG 的 TCK 频率要求

器件	TCK 频率范围
GW1N-1/GW1N-1S	1.4Mhz ~ 5Mhz
GW1N(R)-2/4	2Mhz ~ 5Mhz
GW1N(R)-2B/4B/9 GW1NZ-1/GW1NS(E)-2(C)	1Mhz ~ 5Mhz

GW1N-2/4/6/9, GW1NZ-1 擦除流程

下面详细介绍 GW1N-2/4/6/9, GW1NZ-1 系列芯片的擦除流程(其他型号请忽略), 如图 2-11 所示。

- 1. 建立 JTAG 链路, TAP 复位;
- 2. 读取设备 ID CODE, 检查是否匹配, 此步骤可选;
- 3. 发送 ConfigEnable 指令 0x15, 时序参照 2.2.5 节所述的发送 ReadIDCode 指令 h11 时序;
- 4. 如果 SRAM 未被配置过(包括从内外 Flash 配置),或者采用背景烧录时,步骤 5-10 忽略;
- 5. 发送 SRAM Erase 指令 0x05:
- 6. 发送 Noop 指令 0x02;
- 7. 在 Run-Test-Idle 持续产生时钟(Run-Test),持续时间为 6ms;
- 8. 发送 SRAM Erase Done 指令 0x09:
- 9. 发送 Noop 指令 0x02;
- 10. 在 Run-Test-Idle 持续产生时钟(Run-Test),持续时间为 500 μs;
- 11. 发送 EFlash Erase 指令 0x75;
- 12. 依次移动状态机: Run-Test-Idle -> Select-DR-Scan-> Update-DR -> Capture-DR -> Shift-DR -> Transfer 32 bits-> Exit1-DR -> Update-DR -> Run-Test-Idle;
- **13**. 在 Run-Test-Idle 持续产生时钟(Run-Test),持续时间为 **120ms**,此处 有频率要求,见表 **2-5**;
- 14. 发送 ConfigDisabled 指令 0x3A;
- 15. 发送 Noop 指令 0x02;
- 16. 发送 Repogram 指令 0x3C, 使 Flash 数据向 SRAM 加载;
- 17. 发送 Noop 指令 0x02。

TN653-1.07 14(33)

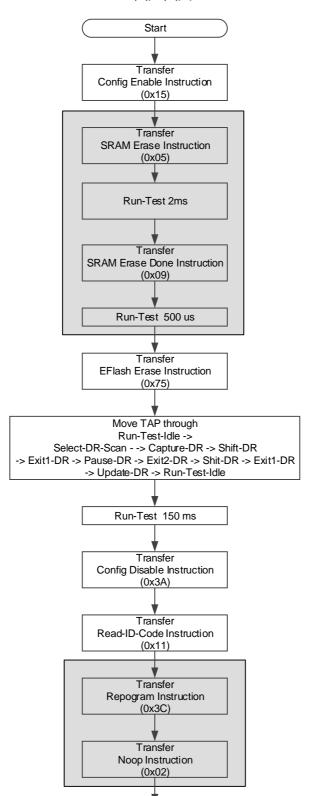
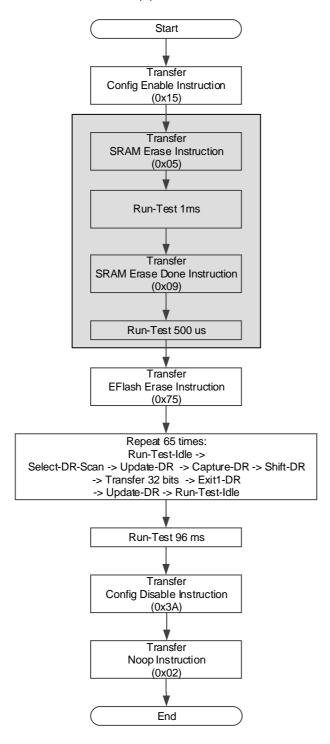


图 2-11 擦除 GW1N-2(B)/4(B)/6/9, GW1NZ-1 内部 Flash 擦除流程

注!
Background Programming 时,忽略底纹区域操作。

End

TN653-1.07 15(33)


GW1N-1(S)擦除流程

GW1N-1(S)芯片的擦除流程,与GW1N-2/4/6/9,GW1NZ-1有所不同,如发送ConfigDisabled指令0x3A;

- 1. 发送 Noop 指令 0x02;
- 2. 发送 Repogram 指令 0x3C, 使 Flash 数据向 SRAM 加载;
- 3. 发送 Noop 指令 0x02。 图 2-12 所示。
- 4. 参考 GW1N-2/4/6/9, GW1NZ-1 擦除流程, 重复步骤 1 到 11;
- 5. 移动状态机,从 Run-Test-Idle 到 Shift-DR,产生 32 个时钟(TDI 信号保持低电平)。在第 32 个时钟同时移动状态机到 Exit1-DR,再经过 Update-DR 回到 Run-Test-Idle;
- 6. 重复上述步骤,总共65次;
- 7. 在 Run-Test-Idle 持续产生时钟(Run-Test),持续时间为 150ms,此处 有频率要求,见表 2-5;
- 8. 发送 ConfigDisabled 指令 0x3A;
- 9. 发送 Noop 指令 0x02;
- 10. 发送 Repogram 指令 0x3C, 使 Flash 数据向 SRAM 加载;
- 11. 发送 Noop 指令 0x02。

TN653-1.07 16(33)

图 2-12 擦除 GW1N-1(S)内部 Flash 流程

TN653-1.07 17(33)

GW1NS(E)-2(C)擦除流程

GW1NS(E)-2(C)具备两个内置 Flash, 烧录时要注意区分, 流程如下:

- 1. (可选项)检查器件 ID 是否匹配;
- 2. 发送 ConfigEnable 指令 0x15, 时序参照 2.2.5 所述的发送 ReadIDCode 指令 h11 时序;
- 3. (可选项)如果擦除第二个 flash,发送 Flash 2nd Enable 指令 0x78。 注!

擦除第二个 Flash 的条件是 FPGA 应处于 Wakeup 状态(Status Code 中 Done Final 应为 1);

- 4. 发送 SRAM Erase Done 指令 0x09;
- 5. 移动状态机到 Shift-DR,产生时长为 110ms 的时钟,此处有频率要求,见表 2-5:
- 6. 发送 ConfigDisabled 指令 0x3A;
- 7. 发送 Noop 指令 0x02, 流程结束。

2.2.9 编程内部 Flash 流程

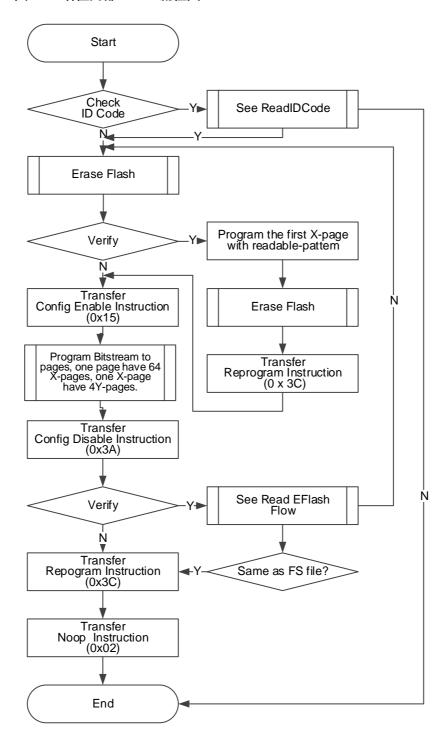
内置 Flash 以 256Bytes 为一个 X-page,每个 X-page 分成 64 个 Y-page,每 Y-page 包含 4Bytes。

第一个 X-page 的第一个 Y-page,用于标识 Flash 是否可以具备 Autoboot(自动加载)功能或回读功能。如表 2-6 所示。当第一个 Y-page 写入 Readable-pattern 后,可读取 Flash 数据;当第一个 Y-page 写入 Autoboot-pattern 后,器件在 autoboot mode 下会自动把 Flash 数据加载到 SRAM 中;只有写入 Readable-pattern 后才能读取 Flash,其他情况均不能读取。具备 Backgroud programming 功能的器件,仅需使用 Autoboot-pattern。

当前,GW1N 系列内置 Flash 因工艺不同,对 JTAG 编程频率有不同要求,请参见 2.2.8 擦除內部 Flash > 表 2-5 JTAG 的 TCK 频率要求。

表 2-6 Readback	-pattern	/ Autoboot-	pattern

Device	Readable-pattern(4 Bytes)	Autoboot-pattern(4 Bytes)		
GW1N-1/				
GW1N-1S	0x07,0x07,0x30,0x40			
GW1N(R)-2/4		0x47,0x57,0x31,0x4E		
GW1N(R)-2B/4B/9	0xF7,0xF7,0x3F,0x4F	0,47,0,07,0,07,0,42		
GW1NZ-1	000 7,000 7,000 ,0041			
GW1NS(E)-2(C)				


编程内部 Flash 流程如图 2-13 所示:

- 1. 检查 **IDcode** 是否匹配;
- 2. 擦除 Flash:
- 3. (选项)验证是否擦除成功,可通过读取 Status 寄存器,看器件是否已还原为裸片的初始状态,对背景烧录和 GW1NS 系列器件不能通过查看 Status 来判断:
- 4. 发送 ConfigEnable 指令 0x15;
- 5. 以 X-page 为单位,每次写一个 X-page,直至烧录完成;
- 6. 发送 ConfigDisable 指令 0x3A;

TN653-1.07 18(33)

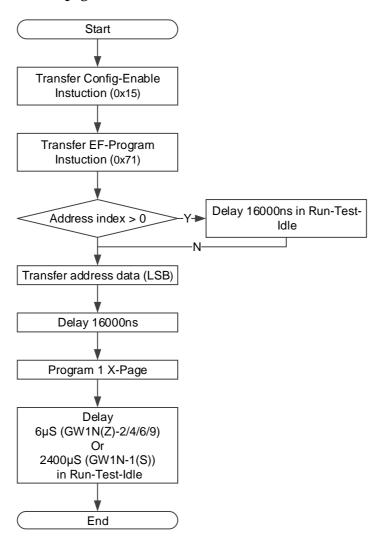
- 7. 发送 Reprogram 指令 0x3C,使器件加载 Flash 的数据到 SRAM;
- 8. 读取 Status Code/User Code 验证是否加载成功。

图 2-13 编程内部 Flash 流程图

TN653-1.07 19(33)

编程一个X-page流程

编程一个 X-page 流程如下描述,如图 2-14 所示。


- 1. 发送 ConfigEnable 指令 0x15;
- 2. 发送 EF-Program 指令 0x71;
- 3. 进入 Shift-DR 发送地址数据 ¹;
- 4. 写入一个 X-page 的数据。
 一个 Y-page 共 256 个字节,分 64 次,每次编程 4Bytes (即编程一个 Y-page); Y-page 数据遵循 LSB 方式写入。此处流程可见图 2-15。
- 5. 写完一个 X-page 之后, GW1N-1(S)器件需要执行 2400us 时长的时钟, GW1N(Z)-2/4/6/9 系列器件需要执行 6us 时长的时钟, 其他系列器件不需要额外时钟;
- 6. 本次 **X-page** 编程完毕。

注!

[1]地址数据格式共 32bits, 其中低 6 位保留, 例如地址为 b'**00010011** (0x13)时, 写入的地址为 b'**0000000000000000000000010011** (000000), 该地址数据遵循 LSB 方式写入, 最后一个 bit 跳出 Shift-DR。

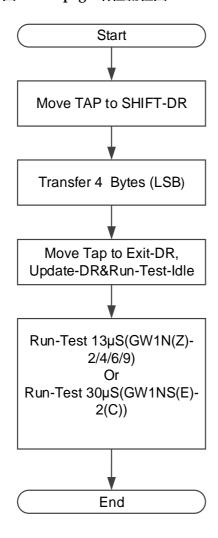
TN653-1.07 20(33)

图 2-14 X-page 编程流程图

TN653-1.07 21(33)

编程一个Y-page流程

Y-page 编程是烧录过程的最小单位,每次写入 4Bytes,数据写入遵循 LSB 方式写入,如图 2-15 所示。


写入完成,不同系列的器件都有要求执行 Run-Test 以等待写入完成,并 且要 JTAG 时钟要满足最低频率要求,见表 2-5。

每次写完一个 Y-page, GW1N(Z)-2/4/6/9 系列要求 Run-Test 13-15μS, GW1N(S)-2(C)系列要求 Run-Test 30-35μS, 其他系列器件不需要。

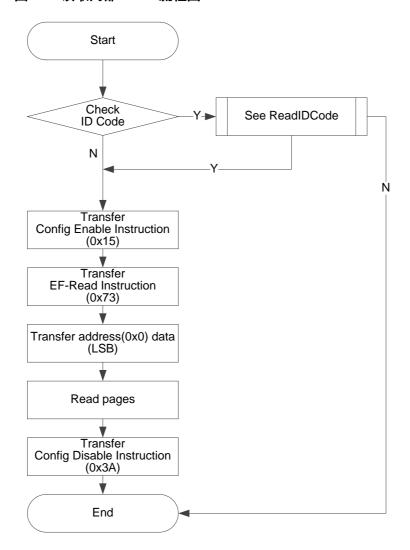
注!

数据从 Configuration Data 取高位 4Bytes, 在 Shift-DR 写数据时要从最低位开始写入(LSB)。

图 2-15 Y-page 编程流程图

2.2.10 读取内部 Flash 流程

读取内部 Flash 流程概览,对 JTAG 的 TCK 没有速率要求。如图 2-16 所示。

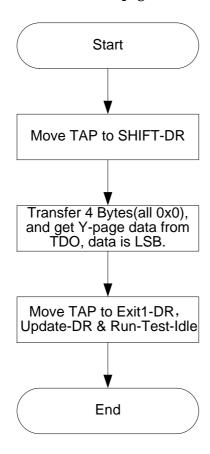

读取内部 Flash 可以理解位是烧录 flash 的逆向过程,但首先要确保写入的 Readable-pattern 已经生效。对于 GW1N 而言,写入 Readable-pattern 后依次发送 Reprogram(0x3C)和 Noop(0x02)可使内部 flash 处于 Readable 状态。

TN653-1.07 22(33)

流程简述:

- 1. 校验 IDCode (可选);
- 2. 发送 ConfigEnable 指令 0x15;
- 3. 发送 EF-Read 指令 0x73;
- 4. 发送读 Flash 起始地址 0x0; 方法同 0 中写 X-address 相同;
- 5. 每读 64 个 Y-page 就是一个 X-page;
- 6. 每次读完一个 X-page 并不需要重新发送地址, 其地址会自动递归;
- 7. 读取完毕后,发送 ConfigDisble 指令 0x3A 结束流程。

图 2-16 读取内部 Flash 流程图

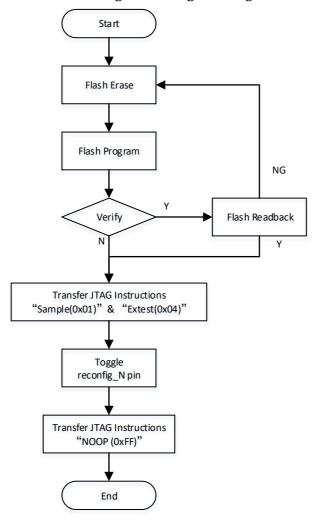


TN653-1.07 23(33)

读取一个Page(Y-page)的过程

与写一个 Y-page 相似,但无写入 Flash 的等待时间,如图 2-17 所示。数据最先输出的是数据最低位。

图 2-17 读取一个 Y-page 的过程



TN653-1.07 24(33)

2.2.11 背景烧录 (Background Programming)

设备有时需要在不影响当前功能的情况下升级数据文件,对 Flash 进行烧录。并且在加载新的数据流文件时,能够保持 IO 状态。下图是 GW1N4 使用背景烧录技术(Background Programming)升级内置 Flash 数据的流程示意图。

图 2-18 GW1N-4 Background Programming 流程图

TN653-1.07 25(33)

Start Run-Test/IDLE Shift-IR (Transfer Sample Instruction 0x01) Update-IR Select-DR-Scan

Capture-DR

Exit1-DR

Update-DR

Select-DR-Scan

Shift-IR (Transfer Extest Instruction 0x04)

Update-IR

Run-TEST/IDLE

End

图 2-19 Transfer JTAG Instrction Sample & Extest 流程图

TN653-1.07 26(33)

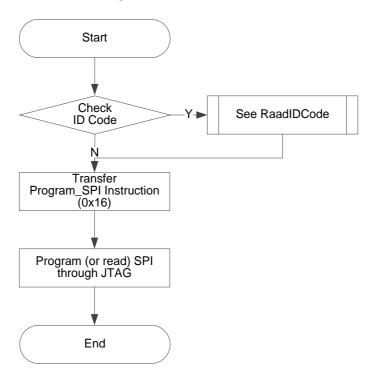
2.2.12 编程外部 Flash

高云 FPGA 可从外部 Flash 中加载数据流文件,可以通过 JTAG 直接烧录外部 Flash。

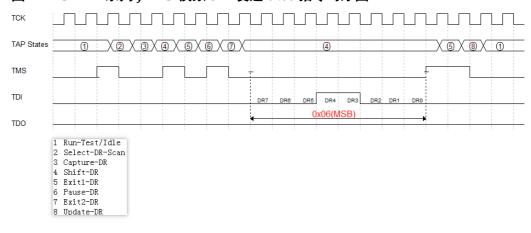
图 2-20 JTAG 接口编程外部 Flash 连接示意图

注!

此图为 JTAG 接口编程外部 Flash 的最小系统图,MODE 值设置为"011"(边界扫描操作编程外部 Flash 不必关心 MODE 值)。


TN653-1.07 27(33)

采用config-mode[2:0]=011模式烧录SPI Flash


此模式通过 JTAG 接口编程外部 Flash 需要设置特定的 MODE[2:0]值为 011。

此模式的原理是将 JTAG 的接口以转发的形式接入 flash 的接口,用户在 JTAG 端操作状态机模拟 SSPI 时序对 SPI Flash 进行编程。

图 2-21 采用 config-mode[2:0]=011 模式编程 SPI Flash 流程示意图

图 2-22 GW2A 系列 JTAG 模拟 SPI 发送 0x06 指令时序图

TN653-1.07 28(33)

TCK 1 X2 X 3 X 4 X 5 X 6 X 7 X 4 (5) (8) (1) TMS TDI DR3 TDO 1 Run-Test/Idle 2 Select-DR-Scan 3 Capture-DR 4 Shift-DR 5 Exit1-DR 6 Pause-DR

图 2-23 GW1N 系列 JTAG 模拟 SPI 发送 0x06 指令时序图

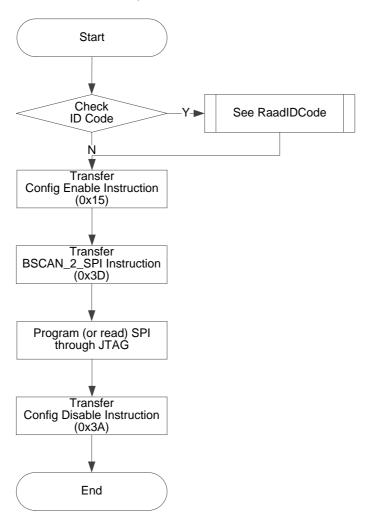
采用Boundary Scan模式烧录SPI Flash

该模式的原理,是使用 Boundary Scan 的方式改变与 SPI 相连管脚的状态来实现 SSPI 时序,从而编程内部 Flash。

该模式采用的 Boundary Scan Chain 长度为 8 位,每 2 位组合对应管脚的状态,如表 2-7 所示,每发送两次 Boundary Scan Chain 完成一次 SCLK 驱动。

表 2-7 管脚状态

7 Exit2-DR 8 Update-DR


Pins Name of SPI Flash	SCLK		CS		DI		DO	
Bscan Chain[7:0]	7	6	5	4	3	2	1	0
(ctrl & data)	0		0		0		1	

注!

- ctrl:0 表示输出, 1 表示输入;
- data:0表示低电平, 1表示高电平。

TN653-1.07 29(33)

图 2-24 采用 Boundary Scan 模式编程 SPI Flash 流程示意图

TN653-1.07 30(33)

2.2.13 读取 Status Register 0x41

通过读取 Status Register,可初步判断器件的状态,如判断是否成功 wakeup、是否存在 timeout 错误、id 校验错误、crc 校验错误等。

Status Register 共有 32 位,读取指令是 0x41,时序与 Read ID Code 一致。

Status Register 的含义如表 2-8 所示。

表 2-8 Status Register 含义

Device Status Register[31:0]	GW1N(R)-1/2/4	GW1NS-2 GW1NS(R)-2C	GW1N(R)-6/9 GW1NZ-1	GW2A-18/55		
0	CRC Error					
1	Bad Command					
2	ID Verify Failed					
3	Timeout					
4	0					
5	Memory Erase					
6	Preamble					
7	System Edit Mode					
8	Program spi flash derectly					
9	0					
10	Non-jtag configuration is active					
11	Bypass					
12	Gowin VLD(1)			0		
13	Done Final					
14	Security Final					
15	Ready(1)	Ready(0)	Ready(1)	Encrypted format		
16	POR(1)			Encrypted key is right		
17	0	Flash1 Lock	Flash Lock	0		
18	0	Flash2 Lock	0	0		
19-31	0					

TN653-1.07 31(33)

2.2.14 读取 User Code 0x13

User Code 共有 32 位,读取指令是 0x13,时序与 Read ID Code 一致。 UserCode 默认使用的是 FS 文件的 checksum 值,可在 Gowin Designer 中重新定义。

2.2.15 重加载 0x3C

该指令作用是使 FPGA 从 flash 中读取数据流文件,并配置到 SRAM。 通过 JTAG 依次发送 Reprogram(0x3C)指令、Noop(0x02)指令, 可使器件重加载,效果同触发 Reconfig_N 管脚 。

2.2.16 擦除 SRAM 0x15

该指令作用是擦除 SRAM。

通过 JTAG 依次发送 ConfigEnable (0x15) 指令、EraseSram (0x05) 指令、Noop (0x02)、ConfigDisable (0x3A) 指令、Noop (0x02) 指令,可擦除 SRAM 区域。

注!

在发送 EraseSram (0x05) 指令、Noop (0x02) 之后,要给足够的时间等待其擦除完毕:

- GW1N-1 参考时间为 1ms;
- GW1N-2/4 参考时间为 2ms;
- GW1N-6/9 参考时间为 4ms。

TN653-1.07 32(33)

3例程文件

关于 JTAG 例程文件,请联系公司技术支持或当地办事处。

TN653-1.07 33(33)

