

 BK v2.9

API Reference Manual

Doc version 1.5

Status Approved

Reference IID-BKPR2-9-API-15-gowin

For internal use by customer only

Confidentialwww.intrinsic-id.com

This product is subject to EU export restrictions according to Council
Regulation (EC) No. 428/2009, dual-use control category 5D002.

This product is subject to EU export restrictions according to Council Regulation (EC) No. 428/2009, dual-use control category 5D002.

This document contains information which is proprietary and confidential to Intrinsic ID B.V. and is intended for internal use only. The document is provided
with the express understanding that the recipient will not divulge its content to other parties or otherwise misappropriate the information contained herein.
Please destroy this document if you are not the intended recipient. Thank you.

Copyright in this document rests with Intrinsic ID B.V. Reproduction or publication in any medium of this document, in whole or in part, is expressly
prohibited without the prior written permission of Intrinsic ID. Intrinsic ID reserves the right to make any changes to this document without prior notice.
The contents of this document is provided AS-IS and without any warranties or guarantees as to accuracy or completeness. Receipt or possession of this
document conveys no license under any patent or other intellectual property right of Intrinsic ID.

Intrinsic ID, QuiddiKey, QuiddiKey RNG, Apollo, BK, BK-Demo, Zign, Zign RNG, Zign Tag, Citadel, iRNG and other designated brands included herein
are trademarks of Intrinsic ID B.V. All other trademarks are the property of their respective owners.

Overview

This document describes the Application Programming Interface (API) and usage instructions for the Intrinsic ID BK
product. It has been automatically generated using Doxygen.

Table of Contents . 3

1 Introduction . 4

1.1 Document Scope . 4

1.2 Product Brief . 4

1.3 Function Groups . 4

2 Module Documentation . 5

2.1 BK API . 5

2.1.1 Detailed Description . 12

2.1.2 Data Structure Documentation . 13

2.1.3 Macro Definition Documentation . 13

2.1.4 Typedef Documentation . 31

2.1.5 Enumeration Type Documentation . 33

2.1.6 Function Documentation . 36

2.2 Return Codes . 70

2.2.1 Detailed Description . 71

2.2.2 Enumeration Type Documentation . 71

2.3 Compiler Attributes . 74

2.3.1 Detailed Description . 74

2.3.2 Macro Definition Documentation . 75

3 Example Documentation . 76

3.1 iid_bk_examples_standalone.c . 76

3.2 iid_bk_examples_mbedtls.c. 79

3.3 iid_bk_examples_wolfssl.c . 84

1. Introduction

1.1. Document Scope

This documentation explains the use of the BK embedded software (SW) library and is mainly intended for SW developers
deploying BK in their application project. Targeted readers are expected to understand the basics of embedded SW
development.

The scope of this documentation is confined to programming interfaces. It does not provide an in-depth description of the
architecture.

1.2. Product Brief

BK is a software IP solution representing Intrinsic ID's flagship product line for secret key generation and storage.
It offers the full benefits of an SRAM Physical Unclonable Function or SRAM PUF in an optimized and configurable
module.

In addition to device key generation and management, full-featured BK also enables various standard cryptographic
operations, all protected by the device-unique security boundary rooted in the SRAM PUF. Available functionality includes,
among other things:

• secure wrapping and unwrapping of application secrets, enabling secure storage
• symmetric key data encryption and decryption with AES
• symmetric key data authentication and verification with HMAC-SHA256 and CMAC-AES
• elliptic curve message signing and verification with ECDSA
• elliptic curve key agreement with ECDH
• elliptic curve secure messaging with Intrinsic ID's custom cryptogram format

This document provides the User Manual for the application programming interface (API) of the BK software library.

1.3. Function Groups

The functions declared in BK's public API are divided in the following subgroups:

• BK Core Functions: this group contains the functions for inspecting and controlling the BK module, but which do not
perform any cryptographic operations. This function group includes bk_get_product_info(), which can always be
called, and the functions for managing the operational state of BK, as described in the BK data sheet
(IID-BK2-9-DS): bk_init(), bk_enroll(), bk_start() and bk_stop().

• BK Randomness and Device-Key Generation Functions: this group contains the basic functions for generating
random numbers and device-unique keys with BK. Functions in this group are only available when a cryptographic
context is instantiated (after a successful call to bk_enroll() or bk_start()).

• BK Symmetric Key Crypto Functions: this group contains the functions for performing symmetric key crypto
operations within an instantiated BK cryptographic context (after a successful call to bk_enroll() or bk_start()).

• BK Elliptic Curve Crypto Functions: this group contains the functions for performing elliptic curve (public key) crypto
operations within an instantiated BK cryptographic context (after a successful call to bk_enroll() or bk_start()).

https://www.intrinsic-id.com/

2. Module Documentation

2.1. BK API

BK Top-Level API.

Data Structures

• struct bk_certificate_subject_t
Certificate (subject) distinguished name. More...

Macros

• #define BK_SECURITY_SIZE_BITS 256
Root security strength of this BK configuration.

• #define BK_SRAM_PUF_SIZE_BYTES 1024
Size in bytes of the SRAM PUF allocation.

• #define BK_AC_SIZE_BYTES 968
Size in bytes of activation code buffer.

• #define BK_CORE_UID_BYTES 32
Size in bytes of the core unique identifier.

• #define BK_SYM_MAX_KEY_BYTES 32
Maximum size in bytes for this configuration, of a symmetric key used by BK.

• #define BK_SYM_MAX_KEY_WORDS 8
Maximum size in words for this configuration, of a symmetric key used by BK.

• #define BK_SYM_MAX_KEY_CODE_BYTES (44 + BK_SYM_MAX_KEY_BYTES)
Size in bytes of a symmetric key code capable of storing the maximum sized symmetric key for this configuration.

• #define BK_USER_KEY_CODE_NONKEY_BYTES (44)
Size in bytes of the header of a key code used to wrap external keys.

• #define BK_ECC_CURVE_SECP521R1_N_BYTES 66
Size in bytes, of an SECP521R1 elliptic curve scalar, smaller than the order of the curve.

• #define BK_ECC_CURVE_SECP521R1_N_WORDS 17
Size in words, of an SECP521R1 elliptic curve scalar, smaller than the order of the curve.

• #define BK_ECC_CURVE_SECP521R1_P_BYTES 66
Size in bytes, of an SECP521R1 elliptic curve field element that represents a coordinate of a curve point.

• #define BK_ECC_CURVE_SECP521R1_P_WORDS 17
Size in words, of an SECP521R1 elliptic curve field element that represents a coordinate of a curve point.

• #define BK_ECC_CURVE_SECP521R1_PRIVATE_KEY_BYTES 66
Size in bytes, of an SECP521R1 elliptic curve private key.

• #define BK_ECC_CURVE_SECP521R1_PUBLIC_KEY_BYTES 133
Size in bytes, of an SECP521R1 elliptic curve public key.

• #define BK_ECC_CURVE_SECP521R1_SIGNATURE_BYTES 132
Size in bytes, of an SECP521R1 elliptic curve signature.

• #define BK_ECC_CURVE_SECP521R1_SHARED_SECRET_BYTES 66
Size in bytes, of an SECP521R1 elliptic curve shared secret.

• #define BK_ECC_CURVE_SECP521R1_STATIC_CRYPTOGRAM_HEADER_BYTES 212
Size in bytes, of an SECP521R1 elliptic curve static cryptogram header.

• #define BK_ECC_CURVE_SECP521R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 344
Size in bytes, of an SECP521R1 elliptic curve ephemeral cryptogram header.

• #define BK_ECC_CURVE_SECP521R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 24
Size in bytes, of an SECP521R1 elliptic curve private key info ASN.1 header.

• #define BK_ECC_CURVE_SECP521R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 25
Size in bytes, of an SECP521R1 elliptic curve public key info ASN.1 header.

• #define BK_ECC_CURVE_SECP521R1_SIG_VALUE_DER_HEADER_BYTES 9
Size in bytes, of an SECP521R1 elliptic curve sig value ASN.1 header.

• #define BK_ECC_CURVE_SECP521R1_SIGNATURE_DER_HEADER_BYTES 13
Size in bytes, of an SECP521R1 elliptic curve signature ASN.1 header.

• #define BK_ECC_CURVE_SECP384R1_N_BYTES 48

Size in bytes, of an SECP384R1 elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_CURVE_SECP384R1_N_WORDS 12

Size in words, of an SECP384R1 elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_CURVE_SECP384R1_P_BYTES 48

Size in bytes, of an SECP384R1 elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_CURVE_SECP384R1_P_WORDS 12

Size in words, of an SECP384R1 elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_CURVE_SECP384R1_PRIVATE_KEY_BYTES 48

Size in bytes, of an SECP384R1 elliptic curve private key.
• #define BK_ECC_CURVE_SECP384R1_PUBLIC_KEY_BYTES 97

Size in bytes, of an SECP384R1 elliptic curve public key.
• #define BK_ECC_CURVE_SECP384R1_SIGNATURE_BYTES 96

Size in bytes, of an SECP384R1 elliptic curve signature.
• #define BK_ECC_CURVE_SECP384R1_SHARED_SECRET_BYTES 48

Size in bytes, of an SECP384R1 elliptic curve shared secret.
• #define BK_ECC_CURVE_SECP384R1_STATIC_CRYPTOGRAM_HEADER_BYTES 176

Size in bytes, of an SECP384R1 elliptic curve static cryptogram header.
• #define BK_ECC_CURVE_SECP384R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 272

Size in bytes, of an SECP384R1 elliptic curve ephemeral cryptogram header.
• #define BK_ECC_CURVE_SECP384R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 22

Size in bytes, of an SECP384R1 elliptic curve private key info ASN.1 header.
• #define BK_ECC_CURVE_SECP384R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 23

Size in bytes, of an SECP384R1 elliptic curve public key info ASN.1 header.
• #define BK_ECC_CURVE_SECP384R1_SIG_VALUE_DER_HEADER_BYTES 8

Size in bytes, of an SECP384R1 elliptic curve sig value ASN.1 header.
• #define BK_ECC_CURVE_SECP384R1_SIGNATURE_DER_HEADER_BYTES 11

Size in bytes, of an SECP384R1 elliptic curve signature ASN.1 header.
• #define BK_ECC_CURVE_SECP256R1_N_BYTES 32

Size in bytes, of an SECP256R1 elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_CURVE_SECP256R1_N_WORDS 8

Size in words, of an SECP256R1 elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_CURVE_SECP256R1_P_BYTES 32

Size in bytes, of an SECP256R1 elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_CURVE_SECP256R1_P_WORDS 8

Size in words, of an SECP256R1 elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_BYTES 32

Size in bytes, of an SECP256R1 elliptic curve private key.
• #define BK_ECC_CURVE_SECP256R1_PUBLIC_KEY_BYTES 65

Size in bytes, of an SECP256R1 elliptic curve public key.
• #define BK_ECC_CURVE_SECP256R1_SIGNATURE_BYTES 64

Size in bytes, of an SECP256R1 elliptic curve signature.
• #define BK_ECC_CURVE_SECP256R1_SHARED_SECRET_BYTES 32

Size in bytes, of an SECP256R1 elliptic curve shared secret.
• #define BK_ECC_CURVE_SECP256R1_STATIC_CRYPTOGRAM_HEADER_BYTES 144

Size in bytes, of an SECP256R1 elliptic curve static cryptogram header.
• #define BK_ECC_CURVE_SECP256R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 208

Size in bytes, of an SECP256R1 elliptic curve ephemeral cryptogram header.
• #define BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 24

Size in bytes, of an SECP256R1 elliptic curve private key info ASN.1 header.
• #define BK_ECC_CURVE_SECP256R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 26

Size in bytes, of an SECP256R1 elliptic curve public key info ASN.1 header.
• #define BK_ECC_CURVE_SECP256R1_SIG_VALUE_DER_HEADER_BYTES 8

Size in bytes, of an SECP256R1 elliptic curve sig value ASN.1 header.
• #define BK_ECC_CURVE_SECP256R1_SIGNATURE_DER_HEADER_BYTES 11

Size in bytes, of an SECP256R1 elliptic curve signature ASN.1 header.
• #define BK_ECC_CURVE_SECP224R1_N_BYTES 28

Size in bytes, of an SECP224R1 elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_CURVE_SECP224R1_N_WORDS 7

Size in words, of an SECP224R1 elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_CURVE_SECP224R1_P_BYTES 28

Size in bytes, of an SECP224R1 elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_CURVE_SECP224R1_P_WORDS 7

Size in words, of an SECP224R1 elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_CURVE_SECP224R1_PRIVATE_KEY_BYTES 28

Size in bytes, of an SECP224R1 elliptic curve private key.
• #define BK_ECC_CURVE_SECP224R1_PUBLIC_KEY_BYTES 57

Size in bytes, of an SECP224R1 elliptic curve public key.
• #define BK_ECC_CURVE_SECP224R1_SIGNATURE_BYTES 56

Size in bytes, of an SECP224R1 elliptic curve signature.
• #define BK_ECC_CURVE_SECP224R1_SHARED_SECRET_BYTES 28

Size in bytes, of an SECP224R1 elliptic curve shared secret.
• #define BK_ECC_CURVE_SECP224R1_STATIC_CRYPTOGRAM_HEADER_BYTES 136

Size in bytes, of an SECP224R1 elliptic curve static cryptogram header.
• #define BK_ECC_CURVE_SECP224R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 192

Size in bytes, of an SECP224R1 elliptic curve ephemeral cryptogram header.
• #define BK_ECC_CURVE_SECP224R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 21

Size in bytes, of an SECP224R1 elliptic curve private key info ASN.1 header.
• #define BK_ECC_CURVE_SECP224R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 23

Size in bytes, of an SECP224R1 elliptic curve public key info ASN.1 header.
• #define BK_ECC_CURVE_SECP224R1_SIG_VALUE_DER_HEADER_BYTES 8

Size in bytes, of an SECP224R1 elliptic curve sig value ASN.1 header.
• #define BK_ECC_CURVE_SECP224R1_SIGNATURE_DER_HEADER_BYTES 11

Size in bytes, of an SECP224R1 elliptic curve signature ASN.1 header.
• #define BK_ECC_CURVE_SECP192R1_N_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_CURVE_SECP192R1_N_WORDS 6

Size in words, of an SECP192R1 elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_CURVE_SECP192R1_P_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_CURVE_SECP192R1_P_WORDS 6

Size in words, of an SECP192R1 elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_CURVE_SECP192R1_PRIVATE_KEY_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve private key.
• #define BK_ECC_CURVE_SECP192R1_PUBLIC_KEY_BYTES 49

Size in bytes, of an SECP192R1 elliptic curve public key.
• #define BK_ECC_CURVE_SECP192R1_SIGNATURE_BYTES 48

Size in bytes, of an SECP192R1 elliptic curve signature.
• #define BK_ECC_CURVE_SECP192R1_SHARED_SECRET_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve shared secret.
• #define BK_ECC_CURVE_SECP192R1_STATIC_CRYPTOGRAM_HEADER_BYTES 128

Size in bytes, of an SECP192R1 elliptic curve static cryptogram header.
• #define BK_ECC_CURVE_SECP192R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 176

Size in bytes, of an SECP192R1 elliptic curve ephemeral cryptogram header.
• #define BK_ECC_CURVE_SECP192R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve private key info ASN.1 header.
• #define BK_ECC_CURVE_SECP192R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 26

Size in bytes, of an SECP192R1 elliptic curve public key info ASN.1 header.
• #define BK_ECC_CURVE_SECP192R1_SIG_VALUE_DER_HEADER_BYTES 8

Size in bytes, of an SECP192R1 elliptic curve sig value ASN.1 header.
• #define BK_ECC_CURVE_SECP192R1_SIGNATURE_DER_HEADER_BYTES 11

Size in bytes, of an SECP192R1 elliptic curve signature ASN.1 header.
• #define BK_ECC_MAX_CURVE_SIZE_N_BYTES 66

Maximum size in bytes for this configuration, of an elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_MAX_CURVE_SIZE_N_WORDS 17

Maximum size in words for this configuration, of an elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_MAX_CURVE_SIZE_P_BYTES 66

Maximum size in bytes for this configuration, of an elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_MAX_CURVE_SIZE_P_WORDS 17

Maximum size in words for this configuration, of an elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_MAX_CURVE_POINT_BYTES 132

Maximum size in bytes for this configuration, of an elliptic curve field element that represents a curve point.
• #define BK_ECC_MAX_CURVE_POINT_WORDS 33

Maximum size in words for this configuration, of an elliptic curve field element that represents a curve point.
• #define BK_ECC_MAX_SIG_VALUE_DER_HEADER_BYTES 9

Maximum size in bytes for this configuration, of an elliptic curve sig value ASN.1 header.
• #define BK_ECC_MAX_SIGNATURE_DER_HEADER_BYTES 13

Maximum size in bytes for this configuration, of an elliptic curve signature ASN.1 header.
• #define BK_ECC_MAX_PUBLIC_KEY_INFO_DER_HEADER_BYTES 26

Maximum size in bytes for this configuration, of an elliptic curve public key info ASN.1 header.
• #define BK_ECC_MAX_PRIVATE_KEY_INFO_DER_HEADER_BYTES 24

Maximum size in bytes for this configuration, of an elliptic curve private key info ASN.1 header.
• #define BK_ECC_MAX_CURVE_SIZE_BYTES BK_ECC_MAX_CURVE_SIZE_N_BYTES

Maximum size in bytes for this configuration, of an elliptic curve scalar, smaller than the order of the curve.
• #define BK_ECC_MAX_CURVE_SIZE_WORDS BK_ECC_MAX_CURVE_SIZE_N_WORDS

Maximum size in bytes for this configuration, of an elliptic curve field element that represents a coordinate of a curve point.
• #define BK_ECC_PRIVATE_KEY_BYTES BK_ECC_MAX_CURVE_SIZE_N_BYTES

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve private key.
• #define BK_ECC_PUBLIC_KEY_BYTES BK_ECC_MAX_CURVE_POINT_BYTES

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve public key.
• #define BK_ECC_STD_PUBLIC_KEY_BYTES (1 + BK_ECC_MAX_CURVE_POINT_BYTES)

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve x9.62 public key.
• #define BK_ECC_SIGNATURE_BYTES BK_ECC_MAX_CURVE_POINT_BYTES

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve ECDSA signature.
• #define BK_ECC_SHARED_SECRET_BYTES BK_ECC_MAX_CURVE_SIZE_P_BYTES

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve ECDH shared secret.
• #define BK_ECC_PRIVATE_KEY_WORDS BK_ECC_MAX_CURVE_SIZE_N_WORDS

Size in words for this configuration, of the store capable of holding the maximum sized elliptic curve private key.
• #define BK_ECC_PUBLIC_KEY_WORDS BK_ECC_MAX_CURVE_POINT_WORDS

Size in words for this configuration, of the store capable of holding the maximum sized elliptic curve public key.
• #define BK_ECC_SIGNATURE_WORDS BK_ECC_MAX_CURVE_POINT_WORDS

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve ECDSA signature.
• #define BK_ECC_SHARED_SECRET_WORDS BK_ECC_MAX_CURVE_SIZE_P_WORDS

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve ECDH shared secret.
• #define BK_ECC_DER_SIG_VALUE_BYTES (BK_ECC_MAX_SIG_VALUE_DER_HEADER_BYTES +

BK_ECC_SIGNATURE_BYTES)
Size in bytes for this configuration, of the byte array capable of holding the maximum sized elliptic curve ECDSA ASN.1 DER
encoded sig value.

• #define BK_ECC_DER_SIGNATURE_BYTES (BK_ECC_MAX_SIGNATURE_DER_HEADER_BYTES +
BK_ECC_SIGNATURE_BYTES)

Size in bytes for this configuration, of the byte array capable of holding the maximum sized elliptic curve ECDSA ASN.1 DER
encoded signature.

• #define
BK_ECC_DER_PUBLIC_KEY_INFO_BYTES (BK_ECC_MAX_PUBLIC_KEY_INFO_DER_HEADER_BYTES +
BK_ECC_STD_PUBLIC_KEY_BYTES)

Size in bytes for this configuration, of the byte array capable of holding the maximum sized elliptic curve ECDSA ASN.1 DER
encoded public key info.

• #define
BK_ECC_DER_PRIVATE_KEY_INFO_BYTES (BK_ECC_MAX_PRIVATE_KEY_INFO_DER_HEADER_BYTES +
BK_ECC_PRIVATE_KEY_BYTES + BK_ECC_STD_PUBLIC_KEY_BYTES)

Size in bytes for this configuration, of the byte array capable of holding the maximum sized elliptic curve ECDSA ASN.1 DER
encoded public key info.

• #define BK_ECC_KEY_CODE_HEADER_BYTES 48
Size in bytes of the header of an elliptic curve key code.

• #define BK_ECC_KEY_CODE_HEADER_WORDS 12
Size in words of the header of an elliptic curve key code.

• #define BK_ECC_PRIVATE_KEY_CODE_SIZE_BYTES (4 ∗ (BK_ECC_KEY_CODE_HEADER_WORDS +
BK_ECC_MAX_CURVE_SIZE_N_WORDS))

Size in bytes for this configuration, of an elliptic curve private key code capable of storing the maximum sized private key.
• #define BK_ECC_PUBLIC_KEY_PACK_BYTES (BK_ECC_MAX_CURVE_POINT_BYTES)

Size in bytes for this configuration, of the representation capable of holding the maximum sized elliptic curve public key.
• #define BK_ECC_PUBLIC_KEY_CODE_SIZE_BYTES (4 ∗ (BK_ECC_KEY_CODE_HEADER_WORDS +

BK_ECC_MAX_CURVE_POINT_WORDS))
Size in bytes for this configuration, of an elliptic curve public key code capable of storing the maximum sized public key.

• #define BK_HYBRID_CRYPTOGRAM_HEADER_BYTES 80
Size in bytes of the fixed part of the header of a cryptogram.

• #define
BK_HYBRID_MAX_STATIC_CRYPTOGRAM_HEADER_SIZE_BYTES (BK_HYBRID_CRYPTOGRAM_HEADER_BYTES
+ 4 ∗ (BK_ECC_MAX_CURVE_POINT_WORDS))

maximum size in bytes for this configuration, of the header of a static key pair cryptogram
• #define

BK_HYBRID_MAX_EPHEMERAL_CRYPTOGRAM_HEADER_SIZE_BYTES (BK_HYBRID_CRYPTOGRAM_HEADER_BYTES
+ 8 ∗ (BK_ECC_MAX_CURVE_POINT_WORDS))

maximum size in bytes for this configuration, of the header of an ephemeral key pair cryptogram
• #define BK_ECC_CRYPTOGRAM_HEADER_SIZE_BYTES BK_HYBRID_CRYPTOGRAM_HEADER_BYTES

Size in bytes of the fixed part of the header of a cryptogram (legacy definition)

Typedefs

• typedef bk_key_source_id_t bk_ecc_key_source_t
Key sources.

• typedef uint8_t bk_key_purpose_t
Key purpose.

• typedef uint8_t bk_ecc_private_key_t[66]
Elliptic curve private key.

• typedef bk_key_purpose_t bk_ecc_key_purpose_t
Elliptic curve key purpose.

• typedef uint8_t bk_ecc_std_public_key_t[(1+132)]
Elliptic curve public key.

• typedef uint8_t bk_ecc_signature_t[132]
Elliptic curve ECDSA signature.

• typedef uint8_t bk_ecc_shared_secret_t[66]
Elliptic curve ECDH shared secret.

• typedef uint8_t bk_ecc_private_key_code_t[(4 ∗(12+17))]
Elliptic curve private key code.

• typedef uint8_t bk_ecc_public_key_code_t[(4 ∗(12+33))]
Elliptic curve public key code.

• typedef uint8_t bk_der_sig_value_t[(9+132)]
DER-encoded ECDSA signature following the ECDSA-Sig-Value ASN.1 syntax of RFC 3279

• typedef uint8_t bk_der_signature_t[(13+132)]
Elliptic curve ASN.1 DER encoded signature.

• typedef uint8_t bk_der_public_key_info_t[(26+(1+132))]
DER-encoded public key following the subject_public_key_info ASN.1 syntax of RFC 5480

• typedef uint8_t bk_der_private_key_info_t[(24+66+(1+132))]
DER-encoded elliptic-curve private key following the ECPrivateKey ASN.1 syntax of RFC 5915

Enumerations

• enum bk_sym_key_type_t {
BK_SYM_KEY_TYPE_128 = 0x00 ,
BK_SYM_KEY_TYPE_192 = 0x01 ,
BK_SYM_KEY_TYPE_256 = 0x02 }

Symmetric key type.
• enum bk_key_source_id_t {

BK_KEY_SOURCE_PUF_DERIVED = 0x00 ,
BK_KEY_SOURCE_RNG_DERIVED = 0x01 ,
BK_KEY_SOURCE_USER_PROVIDED = 0x02 }

Key source identifier.
• enum bk_ecc_curve_t {

BK_ECC_CURVE_NIST_P192 = 0x00 ,
BK_ECC_CURVE_NIST_P224 = 0x01 ,
BK_ECC_CURVE_NIST_P256 = 0x02 ,
BK_ECC_CURVE_NIST_P384 = 0x03 ,
BK_ECC_CURVE_NIST_P521 = 0x04 }

Named elliptic curve.
• enum bk_ecc_cryptogram_type_t {

BK_ECC_CRYPTOGRAM_TYPE_ECDH_STATIC = 0x00 ,
BK_ECC_CRYPTOGRAM_TYPE_ECDH_EPHEMERAL = 0x01 }

Elliptic curve cryptogram type.

BK Core Functions

• iid_return_t bk_get_product_info (uint8_t ∗const product_id, uint8_t ∗const major_version, uint8_t ∗const
minor_version, uint8_t ∗const patch, uint8_t ∗const build_number)

https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5915

Gets software product and version information.
• const char ∗ bk_get_version_string (void)

Gets specific software product and version string.
• iid_return_t bk_init (uint8_t ∗const sram_puf, const uint16_t sram_puf_size)

Initializes BK after power-up or reset.
• iid_return_t bk_start (const uint8_t ∗const activation_code)

Starts an existing cryptographic context for BK.
• iid_return_t bk_stop (void)

Stops the active cryptographic context of BK.

BK Randomness and Device-Key Generation Functions

• iid_return_t bk_get_key (const bk_sym_key_type_t key_type, const uint8_t index, uint8_t ∗const key)
(Re)generates a device-unique symmetric key

• iid_return_t bk_generate_random (const uint16_t number_of_bytes, uint8_t ∗const data_buffer)
Generates a sequence of random bytes.

• iid_return_t bk_get_private_key (const bk_ecc_curve_t curve, const uint8_t ∗const usage_context, const uint32_t
usage_context_length, const bk_ecc_key_source_t key_source, uint8_t ∗const private_key)

Generates an elliptic-curve private key.

BK Symmetric Key Crypto Functions

• iid_return_t bk_wrap (const uint8_t index, const uint8_t ∗const key, const uint16_t key_length, uint8_t ∗const
key_code)

Securely wraps a presented key into a device-unique key code.
• iid_return_t bk_unwrap (const uint8_t ∗const key_code, uint8_t ∗const key, uint16_t ∗const key_length, uint8_t
∗const index)

Unwraps the key from a device-unique key code.

BK Elliptic Curve Crypto Functions

• iid_return_t bk_derive_public_key (const bool use_point_compression, const bk_ecc_curve_t curve, const uint8_t
∗const private_key, uint8_t ∗const std_public_key)

Derives an elliptic curve public key from a private key.
• iid_return_t bk_create_private_key (const bk_ecc_curve_t curve, const bk_ecc_key_purpose_t purpose_flags,

const uint8_t ∗const usage_context, const uint32_t usage_context_length, const bk_ecc_key_source_t key_source,
const uint8_t ∗const private_key, bk_ecc_private_key_code_t ∗const private_key_code)

Protects an elliptic curve private key into a private key code, ready for use with BK's elliptic curve functions.
• iid_return_t bk_compute_public_from_private_key (const bk_ecc_private_key_code_t ∗const private_key_code,

bk_ecc_public_key_code_t ∗const public_key_code)
Computes an elliptic curve public key code from a private key code, to be used with BK's elliptic curve functions.

• iid_return_t bk_import_public_key (const bk_ecc_curve_t curve, const bk_ecc_key_purpose_t purpose_flags, const
uint8_t ∗const std_public_key, bk_ecc_public_key_code_t ∗const public_key_code)

Imports an elliptic curve public key to the internal protected public key code format, ready for use with BK's elliptic curve
functions.

• iid_return_t bk_export_public_key (const bool use_point_compression, const bk_ecc_public_key_code_t ∗const
public_key_code, uint8_t ∗const std_public_key, bk_ecc_curve_t ∗const curve, bk_ecc_key_purpose_t ∗const
purpose_flags)

Exports a binary elliptic curve public key from BK's internal protected public key code format.
• iid_return_t bk_ecdsa_sign (const bk_ecc_private_key_code_t ∗const private_key_code, const bool

deterministic_signature, const uint8_t ∗const message, const uint32_t message_length, const bool
message_is_hash, uint8_t ∗const signature, uint16_t ∗const signature_length)

ECDSA-sign signs a message, using a BK protected private key code.

• iid_return_t bk_ecdsa_verify (const bk_ecc_public_key_code_t ∗const public_key_code, const uint8_t ∗const
message, const uint32_t message_length, const bool message_is_hash, const uint8_t ∗const signature, const
uint16_t signature_length)

Verifies an ECDSA-signed message, using a BK protected public key code.
• iid_return_t bk_ecdh_shared_secret (const bk_ecc_private_key_code_t ∗const private_key_code, const

bk_ecc_public_key_code_t ∗const public_key_code, uint8_t ∗const shared_secret)
Computes an ECDH shared secret, from a pair of BK protected public and private key codes.

• iid_return_t bk_generate_cryptogram (const bk_ecc_public_key_code_t ∗const receiver_public_key_code, const
bk_ecc_private_key_code_t ∗const sender_private_key_code, const bk_ecc_cryptogram_type_t cryptogram_type,
uint8_t ∗const counter64, const uint8_t ∗const plaintext, uint32_t plaintext_length, uint8_t ∗const cryptogram,
uint32_t ∗const cryptogram_length)

Generates a BK elliptic-curve cryptogram, providing message encryption and authentication.
• iid_return_t bk_process_cryptogram (const bk_ecc_private_key_code_t ∗const receiver_private_key_code, const

bk_ecc_public_key_code_t ∗const sender_public_key_code, bk_ecc_cryptogram_type_t ∗const cryptogram_type,
uint8_t ∗const counter64, const uint8_t ∗const cryptogram, uint32_t cryptogram_length, uint8_t ∗const plaintext,
uint32_t ∗const plaintext_length)

Processes a received BK elliptic-curve cryptogram to retrieve the contained message.
• iid_return_t bk_get_public_key_from_cryptogram (bool use_point_compression, bk_ecc_curve_t curve, const

uint8_t ∗const cryptogram, uint32_t cryptogram_length, uint8_t ∗const std_public_key)
Extracts the sender's public key embedded in a BK elliptic-curve cryptogram.

BK PKI Functions

• iid_return_t bk_maxsizeof_csr (const bk_ecc_private_key_code_t ∗const private_key_code, const bool
use_point_compression, const bk_certificate_subject_t ∗const csr_subjects, uint16_t ∗const maxcsr_length)

Precomputes the (maximum) byte size of a certificate signing request (CSR).
• iid_return_t bk_create_csr (const bk_ecc_private_key_code_t ∗const private_key_code, const bool

use_point_compression, const bk_certificate_subject_t ∗const csr_subjects, uint8_t ∗const csr, uint16_t ∗const
csr_length)

Creates a certificate signing request (CSR) for an elliptic curve key pair.
• iid_return_t bk_maxsizeof_selfsigned_certificate (const bk_ecc_private_key_code_t ∗const private_key_code,

const bool use_point_compression, const uint8_t ∗const serial, const uint16_t serial_length, const
bk_certificate_subject_t ∗const ssc_subjects, uint16_t ∗const maxcertificate_length)

Precomputes the (maximum) byte size of a self-signed certificate (SSC).
• iid_return_t bk_create_selfsigned_certificate (const bk_ecc_private_key_code_t ∗const private_key_code, const

bool use_point_compression, const uint8_t ∗const serial, const uint16_t serial_length, const char ∗const
valid_start, const char ∗const valid_end, const bk_certificate_subject_t ∗const ssc_subjects, uint8_t ∗const
certificate, uint16_t ∗const certificate_length)

Creates a self-signed certificate (SSC) for an elliptic curve key pair.
• iid_return_t bk_write_ec_private_key (const bk_ecc_curve_t curve, uint8_t ∗const private_key, uint8_t ∗const

ECPrivateKey, uint16_t ∗const ECPrivateKey_length)
Creates a DER-encoded representation of an elliptic curve private key and its associated public key following the
ECPrivateKey ASN.1 syntax specified in RFC 5915.

• iid_return_t bk_write_subject_public_key_info (const bk_ecc_curve_t curve, uint8_t ∗const std_public_key, uint8_t
∗const subject_public_key_info, uint16_t ∗const subject_public_key_info_length)

Creates a DER-encoded representation of an elliptic curve public key following the subject_public_key_info ASN.1 syntax
specified in RFC 5480.

• iid_return_t bk_write_ecdsa_sig_value (const bk_ecc_curve_t curve, const uint8_t ∗const signature, uint8_t ∗const
ecdsa_sig_value, uint16_t ∗const ecdsa_sig_value_length)

Creates a DER-encoded representation of an ECDSA signature following the ECDSA-Sig-Value ASN.1 syntax specified in
RFC 3279.

• iid_return_t bk_read_ec_private_key (const uint8_t ∗const ECPrivateKey, uint8_t ∗const private_key, uint16_t
∗private_key_length, bk_ecc_curve_t ∗const curve)

Reads a DER-encoded representation of an elliptic curve private key and its associated public key following the
ECPrivateKey ASN.1 syntax specified in RFC 5915.

• iid_return_t bk_read_subject_public_key_info (const uint8_t ∗const subject_public_key_info, uint8_t ∗const
std_public_key, uint16_t ∗std_public_key_length, bk_ecc_curve_t ∗const curve)

https://tools.ietf.org/html/rfc5915
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc5915

Reads a DER-encoded representation of an elliptic curve public key following the subject_public_key_info ASN.1 syntax
specified in RFC 5480.

• iid_return_t bk_read_ecdsa_sig_value (const bk_ecc_curve_t curve, const uint8_t ∗const ecdsa_sig_value, uint8_t
∗const signature)

Reads a DER-encoded representation of an ECDSA signature following the ECDSA-Sig-Value ASN.1 syntax specified in
RFC 3279.

BK DER/X.509 Encoding Definitions

• #define BK_DER_LENGTH_OCTETS 8
Maximum size in bytes of a length integer in a DER encoding.

• #define BK_DER_MAX_LENGTH_FIELD (1 + BK_DER_LENGTH_OCTETS)
Maximum size in bytes of the entire length field in a DER encoding.

• #define BK_SSC_MAX_SERIAL_NUMBER_BYTES 20
The maximum number of bytes in the (long integer) serial number of a self-signed certificate (SSC)

• #define BK_SSC_TIME_DIGITS 14
The maximum number of characters in the validity fields (notBefore, notAfter) generalised time value string of a self-signed
certificate (SSC)

• #define BK_SSN_UNDEFINED_VALIDITY "99991231235959Z"
The GeneralizedTime value of "99991231235959Z" used in case of not well defined validity fields (notBefore, notAfter) of a
self-signed certificate.

• #define BK_DER_MAX_SUBJECT_STR 64
The maximum number of characters of CSR or self-signed certificate (SSC) subject distinguished name fields. This size limit
is not due to memory restrictions, but to guard against ill formatted strings.

• #define BK_DER_MAX_OID_STR 32
The maximum number of characters of CSR or self-signed certificate (SSC) OID strings. This size limit is not due to memory
restrictions, but to guard against ill formatted strings.

BK ECC Key Source ID Definitions (legacy)

• #define BK_ECC_KEY_SOURCE_PUF_DERIVED ((bk_ecc_key_source_t)0x00)
Equivalent to BK_KEY_SOURCE_PUF_DERIVED.

• #define BK_ECC_KEY_SOURCE_RANDOM ((bk_ecc_key_source_t)0x01)
Equivalent to BK_KEY_SOURCE_RNG_DERIVED.

• #define BK_ECC_KEY_SOURCE_USER_PROVIDED ((bk_ecc_key_source_t)0x02)
Equivalent to BK_KEY_SOURCE_USER_PROVIDED.

BK Key Purpose Flag Definitions

• #define BK_ECC_KEY_PURPOSE_ECDH ((bk_ecc_key_purpose_t)0x01)
Elliptic curve key (code)s marked with this purpose flag can be used for elliptic curve key agreement (ECDH) and
en/decryption functions (ECIES, cryptogram).

• #define BK_ECC_KEY_PURPOSE_ECDSA ((bk_ecc_key_purpose_t)0x02)
Elliptic curve key (code)s marked with this purpose flag can be used for elliptic curve signature (ECDSA) generation and
verification functions (ECDSA-sign, ECDSA-verify, CSR, self-signed certificate).

• #define BK_ECC_KEY_PURPOSE_ECDH_AND_ECDSA ((bk_ecc_key_purpose_t)(0x01 | 0x02))
This is the combination of the ECDH and ECDSA flags. Elliptic curve key (code)s marked with this purpose flag can be used
for elliptic curve key agreement (ECDH) en/decryption functions (ECIES, cryptogram) as well as signature (ECDSA)
generation and verification functions (ECDSA-sign, ECDSA-verify, CSR, self-signed certificate)

2.1.1. Detailed Description

BK Top-Level API.

https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279

2.1.2. Data Structure Documentation

2.1.2.1. struct bk_certificate_subject_t Certificate (subject) distinguished name.

Structure containing the supported distinguished name fields (X.509) which can be defined for a certificate subject used in
CSR and self-signed certificate (SSC) generation. The name fields are expected as C-style \0-terminated character
strings. The maximim character length of each of these fields is limited to BK_DER_MAX_SUBJECT_STR.

Data Fields

const char ∗ subject_c String describing the subject's countryName field (OID 2.5.4.6)

const char ∗ subject_o String describing the subject's organisationName field (OID 2.5.4.10)

const char ∗ subject_cn String describing the subject's commonName field (OID 2.5.4.3)

const char ∗ subject_sn String describing the subject's serialNumber field (OID 2.5.4.5)

2.1.3. Macro Definition Documentation

2.1.3.1. BK_SECURITY_SIZE_BITS #define BK_SECURITY_SIZE_BITS 256

Root security strength of this BK configuration.

2.1.3.2. BK_SRAM_PUF_SIZE_BYTES #define BK_SRAM_PUF_SIZE_BYTES 1024

Size in bytes of the SRAM PUF allocation.

Examples

iid_bk_examples_standalone.c.

2.1.3.3. BK_AC_SIZE_BYTES #define BK_AC_SIZE_BYTES 968

Size in bytes of activation code buffer.

Examples

iid_bk_examples_standalone.c.

2.1.3.4. BK_CORE_UID_BYTES #define BK_CORE_UID_BYTES 32

Size in bytes of the core unique identifier.

2.1.3.5. BK_SYM_MAX_KEY_BYTES #define BK_SYM_MAX_KEY_BYTES 32

Maximum size in bytes for this configuration, of a symmetric key used by BK.

2.1.3.6. BK_SYM_MAX_KEY_WORDS #define BK_SYM_MAX_KEY_WORDS 8

Maximum size in words for this configuration, of a symmetric key used by BK.

2.1.3.7. BK_SYM_MAX_KEY_CODE_BYTES #define BK_SYM_MAX_KEY_CODE_BYTES (44 +

BK_SYM_MAX_KEY_BYTES)

Size in bytes of a symmetric key code capable of storing the maximum sized symmetric key for this configuration.

2.1.3.8. BK_USER_KEY_CODE_NONKEY_BYTES #define BK_USER_KEY_CODE_NONKEY_BYTES (44)

Size in bytes of the header of a key code used to wrap external keys.

2.1.3.9. BK_ECC_CURVE_SECP521R1_N_BYTES #define BK_ECC_CURVE_SECP521R1_N_BYTES 66

Size in bytes, of an SECP521R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.10. BK_ECC_CURVE_SECP521R1_N_WORDS #define BK_ECC_CURVE_SECP521R1_N_WORDS 17

Size in words, of an SECP521R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.11. BK_ECC_CURVE_SECP521R1_P_BYTES #define BK_ECC_CURVE_SECP521R1_P_BYTES 66

Size in bytes, of an SECP521R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.12. BK_ECC_CURVE_SECP521R1_P_WORDS #define BK_ECC_CURVE_SECP521R1_P_WORDS 17

Size in words, of an SECP521R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.13. BK_ECC_CURVE_SECP521R1_PRIVATE_KEY_BYTES #define

BK_ECC_CURVE_SECP521R1_PRIVATE_KEY_BYTES 66

Size in bytes, of an SECP521R1 elliptic curve private key.

2.1.3.14. BK_ECC_CURVE_SECP521R1_PUBLIC_KEY_BYTES #define

BK_ECC_CURVE_SECP521R1_PUBLIC_KEY_BYTES 133

Size in bytes, of an SECP521R1 elliptic curve public key.

2.1.3.15. BK_ECC_CURVE_SECP521R1_SIGNATURE_BYTES #define

BK_ECC_CURVE_SECP521R1_SIGNATURE_BYTES 132

Size in bytes, of an SECP521R1 elliptic curve signature.

2.1.3.16. BK_ECC_CURVE_SECP521R1_SHARED_SECRET_BYTES #define

BK_ECC_CURVE_SECP521R1_SHARED_SECRET_BYTES 66

Size in bytes, of an SECP521R1 elliptic curve shared secret.

2.1.3.17. BK_ECC_CURVE_SECP521R1_STATIC_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP521R1_STATIC_CRYPTOGRAM_HEADER_BYTES 212

Size in bytes, of an SECP521R1 elliptic curve static cryptogram header.

2.1.3.18. BK_ECC_CURVE_SECP521R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP521R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 344

Size in bytes, of an SECP521R1 elliptic curve ephemeral cryptogram header.

2.1.3.19. BK_ECC_CURVE_SECP521R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP521R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 24

Size in bytes, of an SECP521R1 elliptic curve private key info ASN.1 header.

2.1.3.20. BK_ECC_CURVE_SECP521R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP521R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 25

Size in bytes, of an SECP521R1 elliptic curve public key info ASN.1 header.

2.1.3.21. BK_ECC_CURVE_SECP521R1_SIG_VALUE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP521R1_SIG_VALUE_DER_HEADER_BYTES 9

Size in bytes, of an SECP521R1 elliptic curve sig value ASN.1 header.

2.1.3.22. BK_ECC_CURVE_SECP521R1_SIGNATURE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP521R1_SIGNATURE_DER_HEADER_BYTES 13

Size in bytes, of an SECP521R1 elliptic curve signature ASN.1 header.

2.1.3.23. BK_ECC_CURVE_SECP384R1_N_BYTES #define BK_ECC_CURVE_SECP384R1_N_BYTES 48

Size in bytes, of an SECP384R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.24. BK_ECC_CURVE_SECP384R1_N_WORDS #define BK_ECC_CURVE_SECP384R1_N_WORDS 12

Size in words, of an SECP384R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.25. BK_ECC_CURVE_SECP384R1_P_BYTES #define BK_ECC_CURVE_SECP384R1_P_BYTES 48

Size in bytes, of an SECP384R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.26. BK_ECC_CURVE_SECP384R1_P_WORDS #define BK_ECC_CURVE_SECP384R1_P_WORDS 12

Size in words, of an SECP384R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.27. BK_ECC_CURVE_SECP384R1_PRIVATE_KEY_BYTES #define

BK_ECC_CURVE_SECP384R1_PRIVATE_KEY_BYTES 48

Size in bytes, of an SECP384R1 elliptic curve private key.

2.1.3.28. BK_ECC_CURVE_SECP384R1_PUBLIC_KEY_BYTES #define

BK_ECC_CURVE_SECP384R1_PUBLIC_KEY_BYTES 97

Size in bytes, of an SECP384R1 elliptic curve public key.

2.1.3.29. BK_ECC_CURVE_SECP384R1_SIGNATURE_BYTES #define

BK_ECC_CURVE_SECP384R1_SIGNATURE_BYTES 96

Size in bytes, of an SECP384R1 elliptic curve signature.

2.1.3.30. BK_ECC_CURVE_SECP384R1_SHARED_SECRET_BYTES #define

BK_ECC_CURVE_SECP384R1_SHARED_SECRET_BYTES 48

Size in bytes, of an SECP384R1 elliptic curve shared secret.

2.1.3.31. BK_ECC_CURVE_SECP384R1_STATIC_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP384R1_STATIC_CRYPTOGRAM_HEADER_BYTES 176

Size in bytes, of an SECP384R1 elliptic curve static cryptogram header.

2.1.3.32. BK_ECC_CURVE_SECP384R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP384R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 272

Size in bytes, of an SECP384R1 elliptic curve ephemeral cryptogram header.

2.1.3.33. BK_ECC_CURVE_SECP384R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP384R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 22

Size in bytes, of an SECP384R1 elliptic curve private key info ASN.1 header.

2.1.3.34. BK_ECC_CURVE_SECP384R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP384R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 23

Size in bytes, of an SECP384R1 elliptic curve public key info ASN.1 header.

2.1.3.35. BK_ECC_CURVE_SECP384R1_SIG_VALUE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP384R1_SIG_VALUE_DER_HEADER_BYTES 8

Size in bytes, of an SECP384R1 elliptic curve sig value ASN.1 header.

2.1.3.36. BK_ECC_CURVE_SECP384R1_SIGNATURE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP384R1_SIGNATURE_DER_HEADER_BYTES 11

Size in bytes, of an SECP384R1 elliptic curve signature ASN.1 header.

2.1.3.37. BK_ECC_CURVE_SECP256R1_N_BYTES #define BK_ECC_CURVE_SECP256R1_N_BYTES 32

Size in bytes, of an SECP256R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.38. BK_ECC_CURVE_SECP256R1_N_WORDS #define BK_ECC_CURVE_SECP256R1_N_WORDS 8

Size in words, of an SECP256R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.39. BK_ECC_CURVE_SECP256R1_P_BYTES #define BK_ECC_CURVE_SECP256R1_P_BYTES 32

Size in bytes, of an SECP256R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.40. BK_ECC_CURVE_SECP256R1_P_WORDS #define BK_ECC_CURVE_SECP256R1_P_WORDS 8

Size in words, of an SECP256R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.41. BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_BYTES #define

BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_BYTES 32

Size in bytes, of an SECP256R1 elliptic curve private key.

Examples

iid_bk_examples_standalone.c, and iid_bk_examples_wolfssl.c.

2.1.3.42. BK_ECC_CURVE_SECP256R1_PUBLIC_KEY_BYTES #define

BK_ECC_CURVE_SECP256R1_PUBLIC_KEY_BYTES 65

Size in bytes, of an SECP256R1 elliptic curve public key.

2.1.3.43. BK_ECC_CURVE_SECP256R1_SIGNATURE_BYTES #define

BK_ECC_CURVE_SECP256R1_SIGNATURE_BYTES 64

Size in bytes, of an SECP256R1 elliptic curve signature.

2.1.3.44. BK_ECC_CURVE_SECP256R1_SHARED_SECRET_BYTES #define

BK_ECC_CURVE_SECP256R1_SHARED_SECRET_BYTES 32

Size in bytes, of an SECP256R1 elliptic curve shared secret.

2.1.3.45. BK_ECC_CURVE_SECP256R1_STATIC_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP256R1_STATIC_CRYPTOGRAM_HEADER_BYTES 144

Size in bytes, of an SECP256R1 elliptic curve static cryptogram header.

2.1.3.46. BK_ECC_CURVE_SECP256R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP256R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 208

Size in bytes, of an SECP256R1 elliptic curve ephemeral cryptogram header.

2.1.3.47. BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 24

Size in bytes, of an SECP256R1 elliptic curve private key info ASN.1 header.

2.1.3.48. BK_ECC_CURVE_SECP256R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP256R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 26

Size in bytes, of an SECP256R1 elliptic curve public key info ASN.1 header.

2.1.3.49. BK_ECC_CURVE_SECP256R1_SIG_VALUE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP256R1_SIG_VALUE_DER_HEADER_BYTES 8

Size in bytes, of an SECP256R1 elliptic curve sig value ASN.1 header.

2.1.3.50. BK_ECC_CURVE_SECP256R1_SIGNATURE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP256R1_SIGNATURE_DER_HEADER_BYTES 11

Size in bytes, of an SECP256R1 elliptic curve signature ASN.1 header.

2.1.3.51. BK_ECC_CURVE_SECP224R1_N_BYTES #define BK_ECC_CURVE_SECP224R1_N_BYTES 28

Size in bytes, of an SECP224R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.52. BK_ECC_CURVE_SECP224R1_N_WORDS #define BK_ECC_CURVE_SECP224R1_N_WORDS 7

Size in words, of an SECP224R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.53. BK_ECC_CURVE_SECP224R1_P_BYTES #define BK_ECC_CURVE_SECP224R1_P_BYTES 28

Size in bytes, of an SECP224R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.54. BK_ECC_CURVE_SECP224R1_P_WORDS #define BK_ECC_CURVE_SECP224R1_P_WORDS 7

Size in words, of an SECP224R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.55. BK_ECC_CURVE_SECP224R1_PRIVATE_KEY_BYTES #define

BK_ECC_CURVE_SECP224R1_PRIVATE_KEY_BYTES 28

Size in bytes, of an SECP224R1 elliptic curve private key.

2.1.3.56. BK_ECC_CURVE_SECP224R1_PUBLIC_KEY_BYTES #define

BK_ECC_CURVE_SECP224R1_PUBLIC_KEY_BYTES 57

Size in bytes, of an SECP224R1 elliptic curve public key.

2.1.3.57. BK_ECC_CURVE_SECP224R1_SIGNATURE_BYTES #define

BK_ECC_CURVE_SECP224R1_SIGNATURE_BYTES 56

Size in bytes, of an SECP224R1 elliptic curve signature.

2.1.3.58. BK_ECC_CURVE_SECP224R1_SHARED_SECRET_BYTES #define

BK_ECC_CURVE_SECP224R1_SHARED_SECRET_BYTES 28

Size in bytes, of an SECP224R1 elliptic curve shared secret.

2.1.3.59. BK_ECC_CURVE_SECP224R1_STATIC_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP224R1_STATIC_CRYPTOGRAM_HEADER_BYTES 136

Size in bytes, of an SECP224R1 elliptic curve static cryptogram header.

2.1.3.60. BK_ECC_CURVE_SECP224R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP224R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 192

Size in bytes, of an SECP224R1 elliptic curve ephemeral cryptogram header.

2.1.3.61. BK_ECC_CURVE_SECP224R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP224R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 21

Size in bytes, of an SECP224R1 elliptic curve private key info ASN.1 header.

2.1.3.62. BK_ECC_CURVE_SECP224R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP224R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 23

Size in bytes, of an SECP224R1 elliptic curve public key info ASN.1 header.

2.1.3.63. BK_ECC_CURVE_SECP224R1_SIG_VALUE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP224R1_SIG_VALUE_DER_HEADER_BYTES 8

Size in bytes, of an SECP224R1 elliptic curve sig value ASN.1 header.

2.1.3.64. BK_ECC_CURVE_SECP224R1_SIGNATURE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP224R1_SIGNATURE_DER_HEADER_BYTES 11

Size in bytes, of an SECP224R1 elliptic curve signature ASN.1 header.

2.1.3.65. BK_ECC_CURVE_SECP192R1_N_BYTES #define BK_ECC_CURVE_SECP192R1_N_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.66. BK_ECC_CURVE_SECP192R1_N_WORDS #define BK_ECC_CURVE_SECP192R1_N_WORDS 6

Size in words, of an SECP192R1 elliptic curve scalar, smaller than the order of the curve.

2.1.3.67. BK_ECC_CURVE_SECP192R1_P_BYTES #define BK_ECC_CURVE_SECP192R1_P_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.68. BK_ECC_CURVE_SECP192R1_P_WORDS #define BK_ECC_CURVE_SECP192R1_P_WORDS 6

Size in words, of an SECP192R1 elliptic curve field element that represents a coordinate of a curve point.

2.1.3.69. BK_ECC_CURVE_SECP192R1_PRIVATE_KEY_BYTES #define

BK_ECC_CURVE_SECP192R1_PRIVATE_KEY_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve private key.

2.1.3.70. BK_ECC_CURVE_SECP192R1_PUBLIC_KEY_BYTES #define

BK_ECC_CURVE_SECP192R1_PUBLIC_KEY_BYTES 49

Size in bytes, of an SECP192R1 elliptic curve public key.

2.1.3.71. BK_ECC_CURVE_SECP192R1_SIGNATURE_BYTES #define

BK_ECC_CURVE_SECP192R1_SIGNATURE_BYTES 48

Size in bytes, of an SECP192R1 elliptic curve signature.

2.1.3.72. BK_ECC_CURVE_SECP192R1_SHARED_SECRET_BYTES #define

BK_ECC_CURVE_SECP192R1_SHARED_SECRET_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve shared secret.

2.1.3.73. BK_ECC_CURVE_SECP192R1_STATIC_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP192R1_STATIC_CRYPTOGRAM_HEADER_BYTES 128

Size in bytes, of an SECP192R1 elliptic curve static cryptogram header.

2.1.3.74. BK_ECC_CURVE_SECP192R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES #define

BK_ECC_CURVE_SECP192R1_EPHEMERAL_CRYPTOGRAM_HEADER_BYTES 176

Size in bytes, of an SECP192R1 elliptic curve ephemeral cryptogram header.

2.1.3.75. BK_ECC_CURVE_SECP192R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP192R1_PRIVATE_KEY_INFO_DER_HEADER_BYTES 24

Size in bytes, of an SECP192R1 elliptic curve private key info ASN.1 header.

2.1.3.76. BK_ECC_CURVE_SECP192R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP192R1_PUBLIC_KEY_INFO_DER_HEADER_BYTES 26

Size in bytes, of an SECP192R1 elliptic curve public key info ASN.1 header.

2.1.3.77. BK_ECC_CURVE_SECP192R1_SIG_VALUE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP192R1_SIG_VALUE_DER_HEADER_BYTES 8

Size in bytes, of an SECP192R1 elliptic curve sig value ASN.1 header.

2.1.3.78. BK_ECC_CURVE_SECP192R1_SIGNATURE_DER_HEADER_BYTES #define

BK_ECC_CURVE_SECP192R1_SIGNATURE_DER_HEADER_BYTES 11

Size in bytes, of an SECP192R1 elliptic curve signature ASN.1 header.

2.1.3.79. BK_ECC_MAX_CURVE_SIZE_N_BYTES #define BK_ECC_MAX_CURVE_SIZE_N_BYTES 66

Maximum size in bytes for this configuration, of an elliptic curve scalar, smaller than the order of the curve.

2.1.3.80. BK_ECC_MAX_CURVE_SIZE_N_WORDS #define BK_ECC_MAX_CURVE_SIZE_N_WORDS 17

Maximum size in words for this configuration, of an elliptic curve scalar, smaller than the order of the curve.

2.1.3.81. BK_ECC_MAX_CURVE_SIZE_P_BYTES #define BK_ECC_MAX_CURVE_SIZE_P_BYTES 66

Maximum size in bytes for this configuration, of an elliptic curve field element that represents a coordinate of a curve point.

2.1.3.82. BK_ECC_MAX_CURVE_SIZE_P_WORDS #define BK_ECC_MAX_CURVE_SIZE_P_WORDS 17

Maximum size in words for this configuration, of an elliptic curve field element that represents a coordinate of a curve
point.

2.1.3.83. BK_ECC_MAX_CURVE_POINT_BYTES #define BK_ECC_MAX_CURVE_POINT_BYTES 132

Maximum size in bytes for this configuration, of an elliptic curve field element that represents a curve point.

2.1.3.84. BK_ECC_MAX_CURVE_POINT_WORDS #define BK_ECC_MAX_CURVE_POINT_WORDS 33

Maximum size in words for this configuration, of an elliptic curve field element that represents a curve point.

2.1.3.85. BK_ECC_MAX_SIG_VALUE_DER_HEADER_BYTES #define

BK_ECC_MAX_SIG_VALUE_DER_HEADER_BYTES 9

Maximum size in bytes for this configuration, of an elliptic curve sig value ASN.1 header.

2.1.3.86. BK_ECC_MAX_SIGNATURE_DER_HEADER_BYTES #define

BK_ECC_MAX_SIGNATURE_DER_HEADER_BYTES 13

Maximum size in bytes for this configuration, of an elliptic curve signature ASN.1 header.

2.1.3.87. BK_ECC_MAX_PUBLIC_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_MAX_PUBLIC_KEY_INFO_DER_HEADER_BYTES 26

Maximum size in bytes for this configuration, of an elliptic curve public key info ASN.1 header.

2.1.3.88. BK_ECC_MAX_PRIVATE_KEY_INFO_DER_HEADER_BYTES #define

BK_ECC_MAX_PRIVATE_KEY_INFO_DER_HEADER_BYTES 24

Maximum size in bytes for this configuration, of an elliptic curve private key info ASN.1 header.

2.1.3.89. BK_ECC_MAX_CURVE_SIZE_BYTES #define

BK_ECC_MAX_CURVE_SIZE_BYTES BK_ECC_MAX_CURVE_SIZE_N_BYTES

Maximum size in bytes for this configuration, of an elliptic curve scalar, smaller than the order of the curve.

2.1.3.90. BK_ECC_MAX_CURVE_SIZE_WORDS #define

BK_ECC_MAX_CURVE_SIZE_WORDS BK_ECC_MAX_CURVE_SIZE_N_WORDS

Maximum size in bytes for this configuration, of an elliptic curve field element that represents a coordinate of a curve point.

2.1.3.91. BK_ECC_PRIVATE_KEY_BYTES #define BK_ECC_PRIVATE_KEY_BYTES BK_ECC_MAX_CURVE_SIZE_N_BYTES

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve private key.

2.1.3.92. BK_ECC_PUBLIC_KEY_BYTES #define BK_ECC_PUBLIC_KEY_BYTES BK_ECC_MAX_CURVE_POINT_BYTES

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve public key.

2.1.3.93. BK_ECC_STD_PUBLIC_KEY_BYTES #define BK_ECC_STD_PUBLIC_KEY_BYTES (1 +

BK_ECC_MAX_CURVE_POINT_BYTES)

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve x9.62 public key.

2.1.3.94. BK_ECC_SIGNATURE_BYTES #define BK_ECC_SIGNATURE_BYTES BK_ECC_MAX_CURVE_POINT_BYTES

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve ECDSA signature.

2.1.3.95. BK_ECC_SHARED_SECRET_BYTES #define

BK_ECC_SHARED_SECRET_BYTES BK_ECC_MAX_CURVE_SIZE_P_BYTES

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve ECDH shared secret.

2.1.3.96. BK_ECC_PRIVATE_KEY_WORDS #define

BK_ECC_PRIVATE_KEY_WORDS BK_ECC_MAX_CURVE_SIZE_N_WORDS

Size in words for this configuration, of the store capable of holding the maximum sized elliptic curve private key.

2.1.3.97. BK_ECC_PUBLIC_KEY_WORDS #define BK_ECC_PUBLIC_KEY_WORDS BK_ECC_MAX_CURVE_POINT_WORDS

Size in words for this configuration, of the store capable of holding the maximum sized elliptic curve public key.

2.1.3.98. BK_ECC_SIGNATURE_WORDS #define BK_ECC_SIGNATURE_WORDS BK_ECC_MAX_CURVE_POINT_WORDS

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve ECDSA signature.

2.1.3.99. BK_ECC_SHARED_SECRET_WORDS #define

BK_ECC_SHARED_SECRET_WORDS BK_ECC_MAX_CURVE_SIZE_P_WORDS

Size in bytes for this configuration, of the store capable of holding the maximum sized elliptic curve ECDH shared secret.

2.1.3.100. BK_ECC_DER_SIG_VALUE_BYTES #define

BK_ECC_DER_SIG_VALUE_BYTES (BK_ECC_MAX_SIG_VALUE_DER_HEADER_BYTES + BK_ECC_SIGNATURE_BYTES)

Size in bytes for this configuration, of the byte array capable of holding the maximum sized elliptic curve ECDSA ASN.1
DER encoded sig value.

2.1.3.101. BK_ECC_DER_SIGNATURE_BYTES #define

BK_ECC_DER_SIGNATURE_BYTES (BK_ECC_MAX_SIGNATURE_DER_HEADER_BYTES + BK_ECC_SIGNATURE_BYTES)

Size in bytes for this configuration, of the byte array capable of holding the maximum sized elliptic curve ECDSA ASN.1
DER encoded signature.

2.1.3.102. BK_ECC_DER_PUBLIC_KEY_INFO_BYTES #define

BK_ECC_DER_PUBLIC_KEY_INFO_BYTES (BK_ECC_MAX_PUBLIC_KEY_INFO_DER_HEADER_BYTES +

BK_ECC_STD_PUBLIC_KEY_BYTES)

Size in bytes for this configuration, of the byte array capable of holding the maximum sized elliptic curve ECDSA ASN.1
DER encoded public key info.

2.1.3.103. BK_ECC_DER_PRIVATE_KEY_INFO_BYTES #define

BK_ECC_DER_PRIVATE_KEY_INFO_BYTES (BK_ECC_MAX_PRIVATE_KEY_INFO_DER_HEADER_BYTES +

BK_ECC_PRIVATE_KEY_BYTES + BK_ECC_STD_PUBLIC_KEY_BYTES)

Size in bytes for this configuration, of the byte array capable of holding the maximum sized elliptic curve ECDSA ASN.1
DER encoded public key info.

2.1.3.104. BK_ECC_KEY_CODE_HEADER_BYTES #define BK_ECC_KEY_CODE_HEADER_BYTES 48

Size in bytes of the header of an elliptic curve key code.

2.1.3.105. BK_ECC_KEY_CODE_HEADER_WORDS #define BK_ECC_KEY_CODE_HEADER_WORDS 12

Size in words of the header of an elliptic curve key code.

2.1.3.106. BK_ECC_PRIVATE_KEY_CODE_SIZE_BYTES #define BK_ECC_PRIVATE_KEY_CODE_SIZE_BYTES (4 ∗
(BK_ECC_KEY_CODE_HEADER_WORDS + BK_ECC_MAX_CURVE_SIZE_N_WORDS))

Size in bytes for this configuration, of an elliptic curve private key code capable of storing the maximum sized private key.

2.1.3.107. BK_ECC_PUBLIC_KEY_PACK_BYTES #define

BK_ECC_PUBLIC_KEY_PACK_BYTES (BK_ECC_MAX_CURVE_POINT_BYTES)

Size in bytes for this configuration, of the representation capable of holding the maximum sized elliptic curve public key.

2.1.3.108. BK_ECC_PUBLIC_KEY_CODE_SIZE_BYTES #define BK_ECC_PUBLIC_KEY_CODE_SIZE_BYTES (4 ∗
(BK_ECC_KEY_CODE_HEADER_WORDS + BK_ECC_MAX_CURVE_POINT_WORDS))

Size in bytes for this configuration, of an elliptic curve public key code capable of storing the maximum sized public key.

2.1.3.109. BK_HYBRID_CRYPTOGRAM_HEADER_BYTES #define BK_HYBRID_CRYPTOGRAM_HEADER_BYTES 80

Size in bytes of the fixed part of the header of a cryptogram.

2.1.3.110. BK_HYBRID_MAX_STATIC_CRYPTOGRAM_HEADER_SIZE_BYTES #define

BK_HYBRID_MAX_STATIC_CRYPTOGRAM_HEADER_SIZE_BYTES (BK_HYBRID_CRYPTOGRAM_HEADER_BYTES + 4 ∗
(BK_ECC_MAX_CURVE_POINT_WORDS))

maximum size in bytes for this configuration, of the header of a static key pair cryptogram

2.1.3.111. BK_HYBRID_MAX_EPHEMERAL_CRYPTOGRAM_HEADER_SIZE_BYTES #define

BK_HYBRID_MAX_EPHEMERAL_CRYPTOGRAM_HEADER_SIZE_BYTES (BK_HYBRID_CRYPTOGRAM_HEADER_BYTES + 8 ∗
(BK_ECC_MAX_CURVE_POINT_WORDS))

maximum size in bytes for this configuration, of the header of an ephemeral key pair cryptogram

2.1.3.112. BK_ECC_CRYPTOGRAM_HEADER_SIZE_BYTES #define

BK_ECC_CRYPTOGRAM_HEADER_SIZE_BYTES BK_HYBRID_CRYPTOGRAM_HEADER_BYTES

Size in bytes of the fixed part of the header of a cryptogram (legacy definition)

2.1.3.113. BK_DER_LENGTH_OCTETS #define BK_DER_LENGTH_OCTETS 8

Maximum size in bytes of a length integer in a DER encoding.

2.1.3.114. BK_DER_MAX_LENGTH_FIELD #define BK_DER_MAX_LENGTH_FIELD (1 + BK_DER_LENGTH_OCTETS)

Maximum size in bytes of the entire length field in a DER encoding.

2.1.3.115. BK_SSC_MAX_SERIAL_NUMBER_BYTES #define BK_SSC_MAX_SERIAL_NUMBER_BYTES 20

The maximum number of bytes in the (long integer) serial number of a self-signed certificate (SSC)

2.1.3.116. BK_SSC_TIME_DIGITS #define BK_SSC_TIME_DIGITS 14

The maximum number of characters in the validity fields (notBefore, notAfter) generalised time value string of a
self-signed certificate (SSC)

2.1.3.117. BK_SSN_UNDEFINED_VALIDITY #define BK_SSN_UNDEFINED_VALIDITY "99991231235959Z"

The GeneralizedTime value of "99991231235959Z" used in case of not well defined validity fields (notBefore, notAfter) of
a self-signed certificate.

2.1.3.118. BK_DER_MAX_SUBJECT_STR #define BK_DER_MAX_SUBJECT_STR 64

The maximum number of characters of CSR or self-signed certificate (SSC) subject distinguished name fields. This size
limit is not due to memory restrictions, but to guard against ill formatted strings.

2.1.3.119. BK_DER_MAX_OID_STR #define BK_DER_MAX_OID_STR 32

The maximum number of characters of CSR or self-signed certificate (SSC) OID strings. This size limit is not due to
memory restrictions, but to guard against ill formatted strings.

2.1.3.120. BK_ECC_KEY_SOURCE_PUF_DERIVED #define

BK_ECC_KEY_SOURCE_PUF_DERIVED ((bk_ecc_key_source_t)0x00)

Equivalent to BK_KEY_SOURCE_PUF_DERIVED.

2.1.3.121. BK_ECC_KEY_SOURCE_RANDOM #define

BK_ECC_KEY_SOURCE_RANDOM ((bk_ecc_key_source_t)0x01)

Equivalent to BK_KEY_SOURCE_RNG_DERIVED.

2.1.3.122. BK_ECC_KEY_SOURCE_USER_PROVIDED #define

BK_ECC_KEY_SOURCE_USER_PROVIDED ((bk_ecc_key_source_t)0x02)

Equivalent to BK_KEY_SOURCE_USER_PROVIDED.

2.1.3.123. BK_ECC_KEY_PURPOSE_ECDH #define BK_ECC_KEY_PURPOSE_ECDH ((bk_ecc_key_purpose_t)0x01)

Elliptic curve key (code)s marked with this purpose flag can be used for elliptic curve key agreement (ECDH) and
en/decryption functions (ECIES, cryptogram).

2.1.3.124. BK_ECC_KEY_PURPOSE_ECDSA #define

BK_ECC_KEY_PURPOSE_ECDSA ((bk_ecc_key_purpose_t)0x02)

Elliptic curve key (code)s marked with this purpose flag can be used for elliptic curve signature (ECDSA) generation and
verification functions (ECDSA-sign, ECDSA-verify, CSR, self-signed certificate).

2.1.3.125. BK_ECC_KEY_PURPOSE_ECDH_AND_ECDSA #define

BK_ECC_KEY_PURPOSE_ECDH_AND_ECDSA ((bk_ecc_key_purpose_t)(0x01 | 0x02))

This is the combination of the ECDH and ECDSA flags. Elliptic curve key (code)s marked with this purpose flag can be
used for elliptic curve key agreement (ECDH) en/decryption functions (ECIES, cryptogram) as well as signature (ECDSA)
generation and verification functions (ECDSA-sign, ECDSA-verify, CSR, self-signed certificate)

2.1.4. Typedef Documentation

2.1.4.1. bk_ecc_key_source_t typedef bk_key_source_id_t bk_ecc_key_source_t

Key sources.

Defines the allowed sources from which an elliptic curve private key can be generated.

2.1.4.2. bk_key_purpose_t bk_key_purpose_t

Key purpose.

Generic key purpose type which is further specialized as a bk_ecc_key_purpose_t.

2.1.4.3. bk_ecc_private_key_t bk_ecc_private_key_t

Elliptic curve private key.

Defines the private key type capable of storing the the maximum sized private key for this configuration.

Examples

iid_bk_examples_wolfssl.c.

2.1.4.4. bk_ecc_key_purpose_t bk_ecc_key_purpose_t

Elliptic curve key purpose.

Defines the allowed purposes which can be assigned to an elliptic curve private or public key. It is stored alongside the
key in the corresponding public- or private key code.

2.1.4.5. bk_ecc_std_public_key_t bk_ecc_std_public_key_t

Elliptic curve public key.

Defines the public key type capable of storing the the maximum sized public key in X9.62 binary format for this
configuration.

2.1.4.6. bk_ecc_signature_t bk_ecc_signature_t

Elliptic curve ECDSA signature.

Defines the ECDSA signature type capable of storing the the maximum sized signature for this configuration.

2.1.4.7. bk_ecc_shared_secret_t bk_ecc_shared_secret_t

Elliptic curve ECDH shared secret.

Defines the ECDH shared secret type capable of storing the the maximum sized shared secret for this configuration.

2.1.4.8. bk_ecc_private_key_code_t bk_ecc_private_key_code_t

Elliptic curve private key code.

Defines the private key code type capable of storing the the maximum sized private key for this configuration.

2.1.4.9. bk_ecc_public_key_code_t bk_ecc_public_key_code_t

Elliptic curve public key code.

Defines the public key code type capable of storing the the maximum sized public key for this configuration.

2.1.4.10. bk_der_sig_value_t bk_der_sig_value_t

DER-encoded ECDSA signature following the ECDSA-Sig-Value ASN.1 syntax of RFC 3279

Defines the byte array type capable of storing the the maximum sized DER-encoded ECDSA-Sig-Value for this
configuration.

https://tools.ietf.org/html/rfc3279

2.1.4.11. bk_der_signature_t bk_der_signature_t

Elliptic curve ASN.1 DER encoded signature.

Defines the byte array type capable of storing the the maximum sized ECDSA ASN.1 DER encoded signature for this
configuration.

2.1.4.12. bk_der_public_key_info_t bk_der_public_key_info_t

DER-encoded public key following the subject_public_key_info ASN.1 syntax of RFC 5480

Defines the byte array type capable of storing the the maximum sized DER-encoded subject_public_key_info for this
configuration.

2.1.4.13. bk_der_private_key_info_t bk_der_private_key_info_t

DER-encoded elliptic-curve private key following the ECPrivateKey ASN.1 syntax of RFC 5915

Defines the byte array type capable of storing the the maximum sized DER-encoded elliptic-curve private key for this
configuration.

2.1.5. Enumeration Type Documentation

2.1.5.1. bk_sym_key_type_t enum bk_sym_key_type_t

Symmetric key type.

Enumerates the symmetric key types which can be generated by the bk_get_key() function. This key type also implies the
size in bytes of the referred key.

Enumerator

BK_SYM_KEY_TYPE_128 128-bit Symmetric Key A 128-bit key for symmetric cryptography algorithms:
• size in bytes of the key value: 16
• size in bytes of the bk_wrap()-generated key code: (16 +

BK_USER_KEY_CODE_NONKEY_BYTES)
• maximal security strength for operations with this key: 128-bit

BK_SYM_KEY_TYPE_192 192-bit Symmetric Key A 192-bit key for symmetric cryptography algorithms:
• size in bytes of the key value: 24
• size in bytes of the bk_wrap()-generated key code: (24 +

BK_USER_KEY_CODE_NONKEY_BYTES)
• maximal security strength for operations with this key: 192-bit

BK_SYM_KEY_TYPE_256 256-bit Symmetric Key A 256-bit key for symmetric cryptography algorithms:
• size in bytes of the key value: 32
• size in bytes of the bk_wrap()-generated key code: (32 +

BK_USER_KEY_CODE_NONKEY_BYTES)
• maximal security strength for operations with this key: 256-bit

https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5915

2.1.5.2. bk_key_source_id_t enum bk_key_source_id_t

Key source identifier.

Enumerates the allowed sources from which a generic, symmetric or elliptic curve private key can be generated for use
with cryptographic functions.

Enumerator

BK_KEY_SOURCE_PUF_DERIVED Key derived from PUF. The key is derived in a direct line from the SRAM
PUF's device unique start-up data. Keys derived in this way can always be
exactly rederived by calling cryptographic functions with the same arguments
in the same cryptographic context, and on the same device.

BK_KEY_SOURCE_RNG_DERIVED Randomly generated key. The key is randomly generated using BK's internal
cryptographically secure random number generator which is seeded by
entropy coming from the device noise. Keys generated in this way cannot be
rederived by cryptographic functions.

BK_KEY_SOURCE_USER_PROVIDED Key provided by user. The key is an external value which is provided by the
calling application to the bk_create_private_key() function.

2.1.5.3. bk_ecc_curve_t enum bk_ecc_curve_t

Named elliptic curve.

Enumerates the named elliptic curves which can be recognized by BK's elliptic curve functions. The used curve also
implies the size in bytes of several input and output parameters of these functions.

Enumerator

BK_ECC_CURVE_NIST_P192 Curve NIST-P192. The elliptic-curve cryptosystem specified by the
NIST-P192/secp192r1 domain parameters:

• BK curve ID: 0x00
• size in bytes of private keys: 24
• size in bytes of public keys: 49
• size in bytes of ECDSA signatures: 48
• size in bytes of ECDH shared secrets: 24
• size in bytes of ECIES header: 49
• maximal security strength for operations over this curve: 96-bit

BK_ECC_CURVE_NIST_P224 Curve NIST-P224. The elliptic-curve cryptosystem specified by the
NIST-P224/secp224r1 domain parameters:

• BK curve ID: 0x01
• size in bytes of private keys: 28
• size in bytes of public keys: 57
• size in bytes of ECDSA signatures: 56
• size in bytes of ECDH shared secrets: 28
• size in bytes of ECIES header: 57
• maximal security strength for operations over this curve: 112-bit

Enumerator

BK_ECC_CURVE_NIST_P256 Curve NIST-P256. The elliptic-curve cryptosystem specified by the
NIST-P256/secp256r1 domain parameters:

• BK curve ID: 0x02
• size in bytes of private keys: 32
• size in bytes of public keys: 65
• size in bytes of ECDSA signatures: 64
• size in bytes of ECDH shared secrets: 32
• size in bytes of ECIES header: 65
• maximal security strength for operations over this curve: 128-bit

BK_ECC_CURVE_NIST_P384 Curve NIST-P384. The elliptic-curve cryptosystem specified by the
NIST-P384/secp384r1 domain parameters:

• BK curve ID: 0x03
• size in bytes of private keys: 48
• size in bytes of public keys: 97
• size in bytes of ECDSA signatures: 96
• size in bytes of ECDH shared secrets: 48
• size in bytes of ECIES header: 97
• maximal security strength for operations over this curve: 192-bit

BK_ECC_CURVE_NIST_P521 Curve NIST-P521. The elliptic-curve cryptosystem specified by the
NIST-P521/secp521r1 domain parameters:

• BK curve ID: 0x04
• size in bytes of private keys: 66
• size in bytes of public keys: 133
• size in bytes of ECDSA signatures: 132
• size in bytes of ECDH shared secrets: 66
• size in bytes of ECIES header: 133
• maximal security strength for operations over this curve: 260-bit

2.1.5.4. bk_ecc_cryptogram_type_t enum bk_ecc_cryptogram_type_t

Elliptic curve cryptogram type.

Enumerates the defined cryptogram types used in bk_generate_cryptogram() and returned by bk_process_cryptogram().

Enumerator

BK_ECC_CRYPTOGRAM_TYPE_ECDH_STATIC Cryptogram type using static key pairs on both sides.
Cryptogram type using static elliptic curve key pairs on
both sending and receiving side:

• offers message confidentiality, message integrity,
source authentication, replay protection

• does not offer forward secrecy, non-repudiation
• size in bytes of cryptogram = size in bytes of

plaintext +
BK_ECC_CRYPTOGRAM_HEADER_SIZE_BYTES
+ size in bytes of public key according to curve - 1

BK_ECC_CRYPTOGRAM_TYPE_ECDH_EPHEMERAL Cryptogram type using an ephemeral sender key pair.
Cryptogram type using an ephemeral key pair on the
sending side, and a static key pair on the receiving side:

• offers message confidentiality, message integrity,
source authentication, replay protection, and
forward secrecy against compromise of the sender's
private key

• does not offer non-repudiation
• size in bytes of cryptogram = size in bytes of

plaintext +
BK_ECC_CRYPTOGRAM_HEADER_SIZE_BYTES
+ (2∗ size in bytes of public key according to curve) -
2

2.1.6. Function Documentation

2.1.6.1. bk_get_product_info() iid_return_t bk_get_product_info (

uint8_t ∗const product_id,

uint8_t ∗const major_version,

uint8_t ∗const minor_version,

uint8_t ∗const patch,

uint8_t ∗const build_number)

Gets software product and version information.

This function can be used to get the exact name, version and patch number of the software module.

Precondition

A call to this function is allowed in all states of BK.

Postcondition

A call to this function never changes the operational state of BK.

Parameters

out product_id Pointer to an output buffer with a size of 1 byte which will hold the product identifier character

out major_version Pointer to an output buffer with a size of 1 byte which will hold the major software version

out minor_version Pointer to an output buffer with a size of 1 byte which will hold the minor software version

out patch Pointer to an output buffer with a size of 1 byte which will hold the software patch number

out build_number Pointer to an output buffer with a size of 1 byte which will hold the build number

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS otherwise

2.1.6.2. bk_get_version_string() const char ∗ bk_get_version_string (

void)

Gets specific software product and version string.

This function can be used to get the exact name, flavor, commit and version.

Precondition

A call to this function is allowed in all states of BK.

Postcondition

A call to this function never changes the operational state of BK.

Returns

A version string

2.1.6.3. bk_init() iid_return_t bk_init (

uint8_t ∗const sram_puf,

const uint16_t sram_puf_size)

Initializes BK after power-up or reset.

This function is used to initialize the BK software module before use, after each device power-up or reset. It points the BK
module to the system's SRAM range which is reserved as SRAM PUF.

Precondition

A call to this function is only allowed when BK is in the Uninitialized state. Called from any other operational state,
this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A successful call to this function changes the operational state of BK to the Initialized state.

Parameters

in,out sram_puf Pointer to physical SRAM PUF used by the module. The physical SRAM pointed to is both
read (the start-up data it contains is used as a PUF), and written (amongst other things to
condition it against silicon aging).
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must
be 0.

in sram_puf_size The size in bytes of available SRAM PUF that can be used by the software.
Note: the size of the SRAM must be (at least) BK_SRAM_PUF_SIZE_BYTES bytes

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_ERROR_STARTUP_DATA or
IID_NOT_ALLOWED otherwise

Examples

iid_bk_examples_mbedtls.c, iid_bk_examples_standalone.c, and iid_bk_examples_wolfssl.c.

2.1.6.4. bk_start() iid_return_t bk_start (

const uint8_t ∗const activation_code)

Starts an existing cryptographic context for BK.

This function is used to re-instantiate a cryptographic context of BK based on a provided activation code which was earlier
generated by bk_enroll(). It is the responsibility of the calling software to reliably store an activation code after bk_enroll(),
and retrieve it before bk_start(). Once a cryptographic context is instantiated, BK's cryptographic functionality becomes
available

Precondition

A call to this function is only allowed when BK is in the Initialized or Stopped state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A successful call to this function (return code equals IID_SUCCESS) changes the operational state of BK to the
Started state.

Parameters

in activation_code Pointer to an input buffer of byte size BK_AC_SIZE_BYTES which holds the activation code.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must be 0.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_INVALID_AC or IID_NOT_ALLOWED otherwise

Examples

iid_bk_examples_mbedtls.c, iid_bk_examples_standalone.c, and iid_bk_examples_wolfssl.c.

2.1.6.5. bk_stop() iid_return_t bk_stop (

void)

Stops the active cryptographic context of BK.

This function will uninstantiate a cryptographic context of BK which was earlier instantiated by bk_enroll() or bk_start().
Once a cryptographic context is uninstantiated, BK's cryptographic functionality becomes unavailable. Moreover,
bk_stop() also ensures that all internal secrets related to the cryptographic context are effectively deleted (zeroized),
which can be used as an additional security measure against attacks.

Precondition

A call to this function is only allowed when BK is in the Initialized state, the Enrolled state, the Started state, or the
Stopped state. Called from any other operational state, this function will return immediately with return code
IID_NOT_ALLOWED, without taking any action.

Note

• Calling this function from the Stopped state is allowed but will have no effect (BK remains in the Stopped state).
• Calling this function from the Initialized state is allowed, and will have as effect that bk_enroll() becomes

unavailable until the next device repower or reset.
• Calling this function from the Uninitialized state is not allowed.

Postcondition

A successful call to this function (return code equals IID_SUCCESS) changes the operational state of BK to the
Stopped state.

Returns

IID_SUCCESS if successful, or IID_NOT_ALLOWED otherwise

Examples

iid_bk_examples_standalone.c.

2.1.6.6. bk_get_key() iid_return_t bk_get_key (

const bk_sym_key_type_t key_type,

const uint8_t index,

uint8_t ∗const key)

(Re)generates a device-unique symmetric key

This function will (re)generate a device-unique symmetric key for the cryptographic context which was earlier instantiated
by bk_enroll() or re-instantiated by bk_start(). The length of the generated key depends on the specified key type. For
each key type, bk_get_key() can (re)generate up to 256 independent device key values, controlled by the key index input
parameter. A call to bk_get_key() with the same input parameter values (key_type and index) on the same device
instantiated with the same cryptographic context, will always return the same key value.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in key_type The type of the device key that will be generated. This must be a value of the enumeration type
bk_sym_key_type_t.

in index An integer value in the range [0:255] indicating the index of the device key that will be generated for
the specified key type. For each index value, a key is generated which is completely independent
from keys generated by other key index values.

out key Pointer to an output buffer which will hold the generated device key.
Note: the size of the key buffer must be large enough to hold a key type as specified by the
key_type input parameter, as indicated here.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS or IID_NOT_ALLOWED otherwise

Examples

iid_bk_examples_mbedtls.c, iid_bk_examples_standalone.c, and iid_bk_examples_wolfssl.c.

2.1.6.7. bk_generate_random() iid_return_t bk_generate_random (

const uint16_t number_of_bytes,

uint8_t ∗const data_buffer)

Generates a sequence of random bytes.

This function will generate a sequence of random bytes using a cryptographically secure random number generator which
is seeded with unpredictable noise entropy from the device.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in number_of_bytes Positive integer in the range [1:65535] which specifies the number of random bytes that will
be returned. The size, in bytes, of the allocated output buffer pointed to by data_buffer needs
to be at least equal to this value.

out data_buffer Pointer to an output buffer of byte size number_of_bytes which will hold the requested
random bytes.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS or IID_NOT_ALLOWED otherwise

Examples

iid_bk_examples_mbedtls.c, iid_bk_examples_standalone.c, and iid_bk_examples_wolfssl.c.

2.1.6.8. bk_get_private_key() iid_return_t bk_get_private_key (

const bk_ecc_curve_t curve,

const uint8_t ∗const usage_context,

const uint32_t usage_context_length,

const bk_ecc_key_source_t key_source,

uint8_t ∗const private_key)

Generates an elliptic-curve private key.

This function will generate a random or a device-unique elliptic curve private key for the cryptographic context which was
earlier instantiated by bk_enroll() or re-instantiated by bk_start(). The length of the generated private key depends on the
specified curve. For each curve option, bk_get_private_key() can (re)generate multiple device-unique key values by
altering the usage context input parameter. The usage context input can be used for key diversification in the application,
and/or to include application-provided key information or entropy into the key generation process.

bk_get_private_key() can generate elliptic curve private keys from two possible sources:

• device-unique private keys derived from the device's secret fingerprint. In this case, providing the same input
parameter values (curve and usage context) on the same device instantiated with the same cryptographic context,
will always return the same private key value.

• randomly generated private keys derived from the device's power-up noise. In this case, always a fresh and
unpredictably random private key value is returned.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in curve Specifies the named elliptic curve on which the considered private key is defined. It
must be a valid curve type of the bk_ecc_curve_t enumeration.

in usage_context Pointer to an input buffer of byte size usage_context_length which holds the
(optional) usage context. When used, the entropy of this buffer is included in the private
key derivation for private keys derived

• from the device fingerprint (key_source =
BK_ECC_KEY_SOURCE_PUF_DERIVED)

• from the device's random number generator (key_source =
BK_ECC_KEY_SOURCE_RANDOM)
Note: providing a usage context is optional. If the specified
usage_context_length is 0, usage context is taken into account and
usage_context must be NULL.

in usage_context_length The size in bytes of the usage_context buffer. If this size is set to 0, no usage
context is taken into account and usage_context must be NULL.

in key_source Specifies the source of the elliptic curve private key. It must be a valid source of the
bk_key_source_id_t enumeration. The allowed private key sources, and their meaning,
are explained here. The allowed key sources for bk_get_private_key() are:

• BK_ECC_KEY_SOURCE_PUF_DERIVED: the private key is derived from the
device fingerprint and (optionally) the provided usage context.

out private_key Pointer to an output buffer which will hold the generated elliptic curve private key. The
private key value is provided in raw binary format, in network byte order representation.
Note: the size of the private key buffer must be large enough to hold a private key as
specified by the curve parameter. For the given configuration, the buffer type
bk_ecc_private_key_t can hold all raw private keys.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS or IID_NOT_ALLOWED otherwise

Examples

iid_bk_examples_mbedtls.c, iid_bk_examples_standalone.c, and iid_bk_examples_wolfssl.c.

2.1.6.9. bk_wrap() iid_return_t bk_wrap (

const uint8_t index,

const uint8_t ∗const key,

const uint16_t key_length,

uint8_t ∗const key_code)

Securely wraps a presented key into a device-unique key code.

This function will securely wrap (authenticated encrypt) an externally provided application key into a key code. The length
of the provided key must be a multiple of 4 bytes, with a minimum of 4 bytes and maximum of 1024 bytes. The length of
the generated key code will be the length of the provided key incremented with the constant size of the key code header
(BK_USER_KEY_CODE_NONKEY_BYTES). In addition to a variable-length key, the application can provide an index
value which gets wrapped alongside the key. The application can assign a custom meaning to this index which relates to
the context of the key. When the key code is unwrapped again with bk_unwrap(), the index will also be returned.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in index An integer value in the range [0:255] indicating the index of the key-to-be-wrapped. For bk_wrap()
and bk_unwrap(), the index is an application-defined value that gets wrapped (in bk_wrap()) and
unwrapped (in bk_unwrap()) alongside the actual key value. The application using BK can use it,
e.g. to specify context-information associated to the key.

in key Pointer to an input buffer with a size of key_length bytes, which holds the plain
key-to-be-wrapped.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must be 0.

in key_length The length, in bytes, of the key-to-be-wrapped. This must be an integer value in the range
[4:4:1024], i.e. the smallest allowed value is 4, the largest is 1024, and only values that are a
multiple of 4 are allowed.

out key_code Pointer to an output buffer of size (key_length + BK_USER_KEY_CODE_NONKEY_BYTES)
bytes which will hold the generated key code containing the wrapped key.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must be 0.

Returns

IID_SUCCESS if succesful, or IID_INVALID_PARAMETERS or IID_NOT_ALLOWED otherwise

2.1.6.10. bk_unwrap() iid_return_t bk_unwrap (

const uint8_t ∗const key_code,

uint8_t ∗const key,

uint16_t ∗const key_length,

uint8_t ∗const index)

Unwraps the key from a device-unique key code.

This function will successfully unwrap (decrypt and authenticate) a provided key code, given that it is called on the same
device and in the same cryptographic context that was used to produce the key code with bk_wrap(). In addition to the
originally wrapped key, bk_unwrap() will also return the index value that got wrapped alongside the key. The application
can parse this index value to determine the context of the key.

bk_unwrap() can determine the exact length of the key code automatically by parsing the key code header, so the
application does not need to provide the key code length. However, the calling software does need to assure that the
allocated key code buffer is large enough to hold the complete key code string.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in key_code Pointer to an input buffer which holds the key-code-to-be-unwrapped.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must be 0.

out key Pointer to an output buffer with a size of (sizeof(key_code) -
BK_USER_KEY_CODE_NONKEY_BYTES) bytes that will hold the unwrapped key.

out key_length Pointer to an output buffer with a size of 2 bytes (representing a uint16_t) which will hold the size in
bytes, of the unwrapped key.

out index Pointer to an output buffer with a size of 1 byte which will hold the index value which was wrapped
alongside the unwrapped key. For bk_wrap() and bk_unwrap(), the index is an application-defined
value that gets wrapped (in bk_wrap()) and unwrapped (in bk_unwrap()) alongside the actual key
value. The application using BK can use it, e.g. to specify context-information associated to the key.

Returns

IID_SUCCESS if succesful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED or IID_INVALID_KEY_CODE
otherwise

2.1.6.11. bk_derive_public_key() iid_return_t bk_derive_public_key (

const bool use_point_compression,

const bk_ecc_curve_t curve,

const uint8_t ∗const private_key,

uint8_t ∗const std_public_key)

Derives an elliptic curve public key from a private key.

This function derives the elliptic curve public key corresponding to a private key created with bk_get_private_key(), and
outputs the public key.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in use_point_compression Note: this flag is present for future use compatibility, but is not used for this product
version of BK. For this product version, this value has to be set to False (no point
compression). Any other values will result in the return code
IID_INVALID_PARAMETERS.

in curve Specifies the named elliptic curve on which the private key is defined. It must be a
valid curve type of the bk_ecc_curve_t enumeration.

in private_key Pointer to an input buffer that holds the elliptic curve private key. The expected input is
binary in network byte order representation. Its size in bytes is determined by the
used curve. For the given configuration, the buffer type bk_ecc_private_key_t can
hold all raw private keys.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address
must be 0.

out std_public_key Pointer to an output buffer that will hold the elliptic curve public key computed from the
private_key input. The output is in X9.62 binary format. Its size in bytes is
determined by the used curve. For the given configuration, the buffer type
bk_ecc_std_public_key_t can hold all X9.62 binary format public keys.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address
must be 0.

Returns

IID_SUCCESS or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED or IID_INVALID_PRIVATE_KEY

2.1.6.12. bk_create_private_key() iid_return_t bk_create_private_key (

const bk_ecc_curve_t curve,

const bk_ecc_key_purpose_t purpose_flags,

const uint8_t ∗const usage_context,

const uint32_t usage_context_length,

const bk_ecc_key_source_t key_source,

const uint8_t ∗const private_key,

bk_ecc_private_key_code_t ∗const private_key_code)

Protects an elliptic curve private key into a private key code, ready for use with BK's elliptic curve functions.

This function transforms an elliptic curve private key into a protected private key code which is only usable within the same
cryptographic context, and on the same unique device, it was created on. This function can take private keys from three
possible sources:

• private keys derived from the device's secret fingerprint
• randomly generated private keys
• user-provided private keys

Alongside the private key values, this function also stores the curve and key purpose flags in the private key code format.
This makes the future use of a generated private key code self-contained, i.e. a consuming function knows on which curve
the contained private key is defined, and for which purposes it is allowed to be used.

Note

The protection mechanisms for transforming private keys into private key codes are similar as for the bk_wrap()
function, but private key codes cannot be unwrapped by bk_unwrap(). The underlying internal keys used by
bk_create_private_key() for protecting private key codes are also different as for key codes generated by bk_wrap().
Once packed into a private key code, the actual private key values can no longer be publicly retrieved by BK.

The generation mechanisms for creating device-unique and random private keys are similar as for
bk_get_private_key(), but private keys generated by bk_get_private_key() and bk_create_private_key() are strongly
cryptographically separated. This entails that calling bk_get_private_key() and bk_create_private_key() with equal
parameters will always result in completely different private key values.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in curve Specifies the named elliptic curve on which the considered private key is defined. It
must be a valid curve type of the bk_ecc_curve_t enumeration.

in purpose_flags Flag which specifies the purpose flags of the private key.

in usage_context Pointer to an input buffer of size usage_context_length bytes which holds the
(optional) usage context. When used, the entropy of this buffer is included in the private
key derivation for private keys derived:

• from the device fingerprint (key_source =
BK_ECC_KEY_SOURCE_PUF_DERIVED)

• from the device's random number generator (key_source =
BK_ECC_KEY_SOURCE_RANDOM)
Note: providing a usage context is optional. If the specified
usage_context_length is 0, no usage context is taken into account and
usage_context must be NULL.

in usage_context_length The size in bytes of the usage_context buffer. If this length is set to 0, no usage
context is taken into account and usage_context must be NULL.

Parameters

in key_source Specifies the source of the elliptic curve private key. It must be a valid source of the
bk_ecc_key_source_t enumeration. The allowed key sources for
bk_create_private_key() are:

• BK_ECC_KEY_SOURCE_PUF_DERIVED: the private key is derived from the
device fingerprint and (optionally) the provided usage context.

• BK_ECC_KEY_SOURCE_RANDOM: the private key is uniformly randomly
generated from BK's internal random number generator and (optionally) the
provided usage context

• BK_ECC_KEY_SOURCE_USER_PROVIDED: the private key is provided
externally. When this key source is selected, usage_context is not used and
private_key is used directly with only a check that it is a well-formed private
key for the specified curve. The resulting private key will be wrapped by a
device-unique PUF key, hence the resulting private key code can only be used
within the same cryptographic context on the same device.
Note: for

• BK_ECC_KEY_SOURCE_PUF_DERIVED
• BK_ECC_KEY_SOURCE_RANDOM the usage_context entropy, if present,

is added to the key derivation process to provide a secure fallback or key
diversification.

in private_key Pointer to an input buffer that holds the private key used when key_source is
user-provided. The expected input is binary in network byte order representation. Its
size in bytes is determined by the used curve. For the given configuration, the buffer
type bk_ecc_private_key_t can hold all raw private keys.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address
must be 0.
Note: for key sources other than BK_ECC_KEY_SOURCE_USER_PROVIDED, this
input is not used.

out private_key_code Pointer to an output buffer for a bk_ecc_private_key_code_t which will hold the created
elliptic curve private key code.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address
must be 0.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED or IID_INVALID_PRIVATE_KEY
otherwise

2.1.6.13. bk_compute_public_from_private_key() iid_return_t bk_compute_public_from_private_key (

const bk_ecc_private_key_code_t ∗const private_key_code,

bk_ecc_public_key_code_t ∗const public_key_code)

Computes an elliptic curve public key code from a private key code, to be used with BK's elliptic curve functions.

This function computes the elliptic curve public key corresponding to a private key code created with
bk_create_private_key(), and outputs the public key in a corresponding public key code format. The curve and purpose
flags of the public key (code) will be the same as the one of the provided private key (code).

Note

The protection mechanisms for storing public keys as public key codes are similar as for the bk_wrap() function, but
public key codes cannot be unwrapped by bk_unwrap(). The underlying internal keys used by
bk_compute_public_from_private_key() for protecting public key codes are also different as for key codes generated
by bk_wrap(). If needed, the function bk_export_public_key() can be used to retrieve the public key value contained
in a public key code.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in private_key_code Pointer to an input buffer for a bk_ecc_private_key_code_t which contains an elliptic curve
private key code created by bk_create_private_key().
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must
be 0.

out public_key_code Pointer to an output buffer for a bk_ecc_public_key_code_t which will hold the created
elliptic curve public key code.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must
be 0.

Returns

IID_SUCCESS if succesfful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_INVALID_PRIVATE_KEY_CODE otherwise

2.1.6.14. bk_import_public_key() iid_return_t bk_import_public_key (

const bk_ecc_curve_t curve,

const bk_ecc_key_purpose_t purpose_flags,

const uint8_t ∗const std_public_key,

bk_ecc_public_key_code_t ∗const public_key_code)

Imports an elliptic curve public key to the internal protected public key code format, ready for use with BK's elliptic curve
functions.

This function imports an elliptic curve public key from a provided X9.62 binary format (compressed or uncompressed) to a
corresponding public key code format. The curve and purpose flags of the public key (code) are also provided as inputs
and stored in the public key code.

Note

The protection mechanisms for storing public keys as public key codes are similar as for the bk_wrap() function, but
public key codes cannot be unwrapped by bk_unwrap(). The underlying internal keys used by
bk_import_public_key() for protecting public key codes are also different as for key codes generated by bk_wrap(). If
needed, the function bk_export_public_key() can be used to retrieve the public key value contained in a public key
code.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in curve Specifies the named elliptic curve on which the public key is defined. It must be a valid curve
type of the bk_ecc_curve_t enumeration.

in purpose_flags Flag which specifies the purpose flags of the public key.

in std_public_key Pointer to an input buffer which holds the elliptic curve public key to be imported. The
expected input is in X9.62 binary format. Its size in bytes is determined by the used [curve]
(bk_ecc_curve_t). For the given configuration, the buffer type bk_ecc_std_public_key_t can
hold all X9.62 binary format public keys.

out public_key_code Pointer to an output buffer for a bk_ecc_public_key_code_t which will hold the created elliptic
curve public key code.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must
be 0.

Returns

IID_SUCCESS or IID_INVALID_PARAMETERS or IID_NOT_ALLOWED or IID_INVALID_PUBLIC_KEY

2.1.6.15. bk_export_public_key() iid_return_t bk_export_public_key (

const bool use_point_compression,

const bk_ecc_public_key_code_t ∗const public_key_code,

uint8_t ∗const std_public_key,

bk_ecc_curve_t ∗const curve,

bk_ecc_key_purpose_t ∗const purpose_flags)

Exports a binary elliptic curve public key from BK's internal protected public key code format.

This function exports a public key from BK's public key code format to an X9.62 binary elliptic curve public key format. The
curve on which the public key is defined, as well as the purpose flags stored alongside the key in public key code, are
returned as well.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in use_point_compression This flag is present for future use compatibility, but is not used for this product version
of BK. For this product version, this value has to be set to False (no point
compression). Any other values will result in the return code
IID_INVALID_PARAMETERS.

in public_key_code Pointer to an input buffer for a bk_ecc_public_key_code_t which holds the elliptic
curve public key code to be exported.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address
must be 0.

out std_public_key Pointer to an output buffer which will hold the exported elliptic curve public key. The
output is in X9.62 binary format. Its size in bytes is determined by the used [curve]
(bk_ecc_curve_t). For the given configuration, the buffer type
bk_ecc_std_public_key_t can hold all X9.62 binary format public keys.

out curve Pointer to an output buffer for a bk_ecc_curve_t which will hold the curve on which the
exported public key is defined.

out purpose_flags Pointer to an output buffer for a bk_ecc_key_purpose_t which will hold the
purpose flags of the exported public key.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_INVALID_PUBLIC_KEY_CODE otherwise

2.1.6.16. bk_ecdsa_sign() iid_return_t bk_ecdsa_sign (

const bk_ecc_private_key_code_t ∗const private_key_code,

const bool deterministic_signature,

const uint8_t ∗const message,

const uint32_t message_length,

const bool message_is_hash,

uint8_t ∗const signature,

uint16_t ∗const signature_length)

ECDSA-sign signs a message, using a BK protected private key code.

This function signs a message or a hash of message using ECDSA with an elliptic curve private key in the internal private
key code format. Signing can be done with either a random seed or a deterministically derived seed as indicated by the
calling application.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in private_key_code Pointer to an input buffer for a bk_ecc_private_key_code_t which holds the elliptic
curve private key code to be used for signing.
Note: a private key code used for signing shall have been created with
bk_create_private_key(), with [purpose flags] (bk_defgroup_keypurpose) allowing
its use for ECDSA operations.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

in deterministic_signature Flag which specifies if either deterministic or non-deterministic signing will be
used. If this value equals False, message will be signed using the standard
ECDSA non-deterministic algorithm. Otherwise, the message will be signed using
a deterministic variant of ECDSA.

in message Pointer to an input buffer of size message_length bytes which holds the
message or the message hash that will be signed. If message_length is zero,
message must be NULL.

in message_length Value which specifies the size in bytes of the message buffer. If
message_is_hash equals True (i.e. the provided message is actually a
message hash), this size must be equal to the size in bytes of the used private key,
as determined by the used curve. Otherwise (i.e. the provided message is a raw
message buffer), the size in bytes must be equal to the raw message size. In this
case, message_length could also be zero in which case an empty message
will be signed. If message_length is zero, message must be NULL.

in message_is_hash Flag which specifies if the provided message buffer contains an already hashed
message, or a raw message buffer. If this value equals False, bk_ecdsa_sign()
will treat the message buffer as a raw message, and will hash it first using
SHA-256 and the trailing bytes will be truncated to equal the length of the used
elliptic curve private key before signing the resulting hash. Otherwise,
bk_ecdsa_sign() will treat the message buffer as an already hashed message,
and it will be signed directly. For this hashed message, SHA-256, SHA-384 and
SHA-512 are accepted.

out signature Pointer to an output buffer which will hold the computed ECDSA signature. The
signature is formatted as the direct concatenation of ECDSA's (r, s) values as two
fixed-length unsigned integers, and the signature size in bytes depends on the
used curve. For the given configuration, the buffer type bk_ecc_signature_t can
hold all signatures. The used curve is set during the creation of the private key
code with bk_create_private_key().

in,out signature_length Pointer to an input/output buffer for a uint16 which as an input holds the allocated
size in bytes of the signature buffer, and as an output will hold the exact size
of the returned signature value. If the size provided by the input is smaller then
the required size as determined by the used curve, the function returns with
IID_INVALID_PARAMETERS but still sets the output value at this pointer to the
required buffer size.

https://tools.ietf.org/html/rfc6979

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_INVALID_PRIVATE_KEY_CODE or IID_ECC_NOT_ALLOWED otherwise

2.1.6.17. bk_ecdsa_verify() iid_return_t bk_ecdsa_verify (

const bk_ecc_public_key_code_t ∗const public_key_code,

const uint8_t ∗const message,

const uint32_t message_length,

const bool message_is_hash,

const uint8_t ∗const signature,

const uint16_t signature_length)

Verifies an ECDSA-signed message, using a BK protected public key code.

This function verifies the ECDSA signature of a message or a hash of message with an elliptic curve public key in the
internal public key code format.

Note

This function has no explicit output parameter(s), but the result of this function will be contained in its return code.
Upon return of IID_SUCCESS, the presented signature was valid for the message, while upon return of
IID_INVALID_SIGNATURE, the presented signature was not valid for the message.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in public_key_code Pointer to an input buffer for a bk_ecc_public_key_code_t which holds the elliptic curve public
key code to be used for verification.
Note: a public key code used for signature verification shall have been computed with
bk_compute_public_from_private_key() or imported with bk_import_public_key(), with
purpose flags allowing its use for ECDSA operations.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must
be 0.

in message Pointer to an input buffer of size message_length bytes which holds the message or the
message hash for which the signature will be verified. If message_length is zero,
message must be NULL.

Parameters

in message_length Value which specifies the size in bytes of the message buffer. If message_is_hash
equals True (i.e. the provided message is actually a message hash), this length must be
equal to the size in bytes of the used private key, as determined by the used [curve]
(bk_ecc_curve_t). Otherwise (i.e. the provided message is a raw message buffer), the size in
bytes must be equal to the raw message length. In this case, message_length could also
be zero in which case an empty message will be verified. If message_length is zero,
message must be NULL.

in message_is_hash Flag which specifies if the provided message buffer contains an already hashed message,
or a raw message buffer. If this value equals False, bk_ecdsa_verify() will treat the message
buffer as a raw message, and will be hash it first using SHA-256 and the trailing bytes will be
truncated to equal the length of the used elliptic curve private key before verifying the
resulting hash. Otherwise, bk_ecdsa_verify() will treat the message buffer as an already
hashed message, and it will be verified directly. For this hashed message, SHA-256,
SHA-384 and SHA-512 are accepted.

in signature Pointer to an input buffer of size signature_length bytes, which holds the ECDSA
signature to be verified. The expected format of the provided signature is the same format as
generated by bk_ecdsa_sign().

in signature_length The size in bytes of the signature to be verified, which depends on the [curve]
(bk_ecc_curve_t) used for the signing operation.

Returns

IID_SUCCESS or IID_INVALID_SIGNATURE if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_INVALID_PUBLIC_KEY_CODE or IID_ECC_NOT_ALLOWED otherwise

2.1.6.18. bk_ecdh_shared_secret() iid_return_t bk_ecdh_shared_secret (

const bk_ecc_private_key_code_t ∗const private_key_code,

const bk_ecc_public_key_code_t ∗const public_key_code,

uint8_t ∗const shared_secret)

Computes an ECDH shared secret, from a pair of BK protected public and private key codes.

This function computes a shared secret value using the ECDH algorithm on the provided private and public key (codes).
The returned shared secret comprises the X-coordinate of the mutual curve point computed with the elliptic curve
Diffie-Hellman method.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in private_key_code Pointer to an input buffer for a bk_ecc_private_key_code_t which holds the elliptic curve
private key code to be used for the Diffie-Hellmann operation.
Note: a private key code used for shared secret computation shall have been created with
bk_create_private_key(), with purpose flags allowing its use for ECDH operations.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must
be 0.

in public_key_code Pointer to an input buffer for a bk_ecc_public_key_code_t which holds the elliptic curve
public key code to be used for the Diffie-Hellmann operation.
Note: a public key code used for shared secret computation shall have been computed with
bk_compute_public_from_private_key() or imported with bk_import_public_key(), with
purpose flags allowing its use for ECDH operations.
Note: a public key code used for shared secret computation shall contain a public key
defined over the same curve as the simultaneously provided private key code.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address must
be 0.

out shared_secret Pointer to an output buffer which will hold the computed shared secret. The size in bytes of
the shared secret depends on the used curve. For the given configuration, the buffer type
bk_ecc_shared_secret_t can hold all shared secrets. The shared secret will be equal to the
X-coordinate of the commonly derived point on the elliptic curve.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_INVALID_PRIVATE_KEY_CODE, IID_INVALID_PUBLIC_KEY_CODE, IID_ECC_NOT_ALLOWED or
IID_CURVE_MISMATCH otherwise

2.1.6.19. bk_generate_cryptogram() iid_return_t bk_generate_cryptogram (

const bk_ecc_public_key_code_t ∗const receiver_public_key_code,

const bk_ecc_private_key_code_t ∗const sender_private_key_code,

const bk_ecc_cryptogram_type_t cryptogram_type,

uint8_t ∗const counter64,

const uint8_t ∗const plaintext,

uint32_t plaintext_length,

uint8_t ∗const cryptogram,

uint32_t ∗const cryptogram_length)

Generates a BK elliptic-curve cryptogram, providing message encryption and authentication.

This function packs a provided plaintext into a BK-specific protected cryptogram format, based on an elliptic curve hybrid
encryption scheme. The cryptogram format offers protection for confidentiality, integrity, sender authentication and replay.
A cryptogram is the single message in a one-pass protocol from a sender to a receiver. The cryptogram generation is
based simultaneously on the sender's private key and the receiver's public key. Both private and public key are provided
as key codes which have to be defined over the same elliptic curve, and both keycodes must have their purpose flags set
to allow the keys being used for ECDH/encryption.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in receiver_public_key_code Pointer to an input buffer for a bk_ecc_public_key_code_t which holds the
elliptic curve public key code of the receiver to whom the generated cryptogram
will be sent.
Note: a public key code used for cryptogram generation shall have been
computed with bk_compute_public_from_private_key() or imported with
bk_import_public_key(), with purpose flags allowing its use for
ECDH/encryption operations.
Note: in order to have secure receiver authentication (i.e. assurance to the
sender that only the intended receiver will be able to unpack the cryptogram),
the public key contained in receiver_public_key_code shall have
been verified in an independent manner (e.g. through certificate validation), or
it shall come from an independent trusted source.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

in sender_private_key_code Pointer to an input buffer for a bk_ecc_private_key_code_t which holds the
elliptic curve private key code of the sender whom will send the generated
cryptogram.
Note: a private key code used for cryptogram generation shall have been
created with bk_create_private_key(), with purpose flags allowing its use for
ECDH/encryption operations.
Note: a private key code used for cryptogram generation shall contain a private
key defined over the same curve as the simultaneously provided public key
code.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

in cryptogram_type Value which specifies the cryptogram type to be generated. It must be a valid
value of the bk_ecc_cryptogram_type_t enumeration.

in,out counter64 Pointer to an input/output buffer with a size of 8 bytes (interpreted as a uint64),
which as an input holds the current 64-bit monotonic counter used for
cryptogram replay protection, and as an output will hold the new counter value
after successful function completion.
Note: a separate counter buffer shall be used for each distinct sender-receiver
key pair. The calling application needs to retrieve this buffer from persistent
storage before each call to bk_generate_cryptogram(), and store back its
updated value in persistent storage after the function completes successfully
(return code is IID_SUCCESS). Upon first use of a counter buffer for a
sender-receiver pair, the counter buffer needs to be initialized to all-zero bytes,
after the initial validation of the receiver's public key.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

Parameters

in plaintext Pointer to an input buffer of size plaintext_length bytes which holds the
plaintext which will be packed in the cryptogram.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.
Note: the length of this buffer must be a multiple of 4 bytes.

in plaintext_length Value which specifies the size in bytes of plaintext. Its value must be
positive (> 0) and a multiple of 4.

out cryptogram Pointer to an output buffer of size cryptogram_length bytes which will
hold the generated cryptogram.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

in,out cryptogram_length Pointer to an input/output buffer for a uint32, which as an input holds the
allocated size in bytes of the cryptogram output buffer, and as an output will
hold the exact size in bytes of the returned cryptogram. If the size provided by
the input is smaller then the required size as determined by the used
[cryptogram type] (bk_ecc_cryptogram_type_t) and curve, the function returns
with IID_INVALID_PARAMETERS but still sets the output value at this pointer
to the required buffer size.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED, IID_INVALID_COUNTER,
IID_INVALID_PRIVATE_KEY_CODE, IID_INVALID_PUBLIC_KEY_CODE, IID_ECC_NOT_ALLOWED or
IID_CURVE_MISMATCH otherwise

2.1.6.20. bk_process_cryptogram() iid_return_t bk_process_cryptogram (

const bk_ecc_private_key_code_t ∗const receiver_private_key_code,

const bk_ecc_public_key_code_t ∗const sender_public_key_code,

bk_ecc_cryptogram_type_t ∗const cryptogram_type,

uint8_t ∗const counter64,

const uint8_t ∗const cryptogram,

uint32_t cryptogram_length,

uint8_t ∗const plaintext,

uint32_t ∗const plaintext_length)

Processes a received BK elliptic-curve cryptogram to retrieve the contained message.

This function processes a received cryptogram in a BK-specific protected cryptogram format, to retrieve the contained
plaintext, using an elliptic curve hybrid decryption scheme. The cryptogram format offers protection for confidentiality,
integrity, sender authentication and replay. A cryptogram is the single message in a one-pass protocol from a sender to a
receiver. The cryptogram processing is based simultaneously on the receiver's private key and the sender's public key.
Both private and public key are provided as key codes which shall have been defined over the same elliptic curve, and
which shall both have their purpose flags set to allow their use for ECDH/encryption. A received cryptogram can only be
correctly processed (decrypted and authenticated) if the provided receiver private key and sender public key correspond
respectively to the receiver public key and sender private key used to create the cryptogram, e.g. using
bk_generate_cryptogram().

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in receiver_private_key_code Pointer to an input buffer for a bk_ecc_private_key_code_t which holds the
elliptic curve private key code of the receiver by whom the cryptogram is
processed.
Note: a private key code used for cryptogram processing shall have been
created with bk_create_private_key(), with [purpose flags]
(bk_defgroup_keypurpose) allowing its use for ECDH/encryption operations.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

in sender_public_key_code Pointer to an input buffer for a bk_ecc_public_key_code_t which holds the
elliptic curve public key code of the sender from whom the to-be-processed
cryptogram was received.
Note: a public key code used for cryptogram processing shall have been
created with bk_compute_public_from_private_key() or
bk_import_public_key(), with purpose flags allowing its use for ECDH/
encryption operations.
Note: in order to have secure sender authentication (i.e. assurance to the
receiver that the cryptogram comes from the expected sender), the public key
contained in sender_public_key_code shall have been verified in an
independent manner (e.g. through certificate validation), or it shall come from
an independent trusted source.
Note: a public key code used for cryptogram processing shall contain a public
key defined over the same curve as the simultaneously provided private key
code.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

out cryptogram_type Pointer to an output buffer for a bk_ecc_cryptogram_type_t which will hold the
cryptogram type which was used to generate the cryptogram.

Parameters

in,out counter64 Pointer to an input/output buffer with a size of 8 bytes (interpreted as a uint64),
which as an input holds the current 64-bit monotonic counter used for
cryptogram replay protection, and as an output will hold the new counter value
after successful function completion.
Note: a separate counter buffer shall be used for each distinct sender-receiver
key pair. The calling application needs to retrieve this buffer from persistent
storage before each call to bk_process_cryptogram(), and store back its
updated value in persistent storage after the function completes successfully
(return code is IID_SUCCESS). Upon first use of a counter buffer for a
sender-receiver pair, the counter buffer needs to be initialized to all-zero bytes,
after the initial validation of the sender's public key.
Note: bk_process_cryptogram() will only be able to successfully process
cryptograms which have been generated with a corresponding counter value
which is strictly larger than the integer value provided as input by
counter64. This prevents replay of old cryptograms, but also obstructs the
ability to process multiple consecutive cryptograms out of order.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

in cryptogram Pointer to an input buffer of size cryptogram_length bytes which holds
the full cryptogram to be processed.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

in cryptogram_length Value which specifies the size in bytes of the presented cryptogram.
Note: this must be the exact size of the cryptogram to be processed, as
specified by the used cryptogram type and curve.

out plaintext Pointer to an output buffer of size plaintext_length bytes, which will
hold the decrypted plaintext.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the
address must be 0.

in,out plaintext_length Pointer to an input/output buffer for a uint32, which as an input holds the
allocated size in bytes of the plaintext output buffer, and as an output will
hold the exact size in bytes of the returned plaintext. If the size provided by the
input is smaller then the required size as determined by the used [cryptogram
type] (bk_ecc_cryptogram_type_t) and curve, the function returns with
IID_INVALID_PARAMETERS but still sets the output value at this pointer to
the required buffer size.

Returns

IID_SUCCESS, IID_INVALID_CRYPTOGRAM or IID_INVALID_SENDER if successful, or
IID_INVALID_PARAMETERS, IID_NOT_ALLOWED, IID_INVALID_COUNTER,
IID_INVALID_PRIVATE_KEY_CODE, IID_INVALID_PUBLIC_KEY_CODE, IID_ECC_NOT_ALLOWED or
IID_CURVE_MISMATCH otherwise

2.1.6.21. bk_get_public_key_from_cryptogram() iid_return_t bk_get_public_key_from_cryptogram (

bool use_point_compression,

bk_ecc_curve_t curve,

const uint8_t ∗const cryptogram,

uint32_t cryptogram_length,

uint8_t ∗const std_public_key)

Extracts the sender's public key embedded in a BK elliptic-curve cryptogram.

This helper function extracts the sender's public key from a received BK elliptic-curve cryptogram. This function is
(optionally) used, prior to cryptogram processing with bk_process_cryptogram(), to facilitate the validation of the sender's
public key. In particular, this function is needed when then receiver upfront has no knowledge of which public key was
used by the sender.

Note

This is an optional helper function. Preferably, a receiver already possesses a trusted copy of the public key used by
the expected sender, in which case it is not necessary to use this function.

This helper function solely attempts to extract the sender's public key value from a provided cryptogram. The
outcome of this function provides no guarantees whatsoever about the correctness/validity/authenticity of the
provided cryptogram or the extracted public key.

Warning

If this function is used to extract a sender's public key, it is important that the retrieved public key is independently
validated before calling bk_process_cryptogram() with it. This can be done, e.g. by looking up and verifying the
certificate corresponding to the public key, or by verifying that the public key matches a trusted copy of that key, e.g.
in a local database. Calling bk_process_cryptogram() with an unvalidated sender public key voids the sender
authentication property of the cryptogram functionality.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK.

Parameters

in use_point_compression This flag is present for future use compatibility, but is not used for this product version
of BK. For this product version, this value has to be set to False (no point
compression). Any other values will result in the return code
IID_INVALID_PARAMETERS.

in curve Specifies the named elliptic curve on which the cryptogram is defined. It must be a
valid curve type of the bk_ecc_curve_t enumeration.

in cryptogram Pointer to an input buffer of size cryptogram_length bytes, which holds the full
cryptogram.
Note: the address must be at a 32-bit boundary, so the lowest two bits of the address
must be 0.

in cryptogram_length Value which specifies the size in bytes of the presented cryptogram.
Note: this must be the exact size of the cryptogram to be processed, as specified by
the used cryptogram type and curve.

out std_public_key Pointer to an output buffer which will hold the extracted public key in X9.62 binary
format. The size in bytes is determined by the used curve. For the given configuration,
the buffer type bk_ecc_std_public_key_t can hold all X9.62 binary format public keys.

Returns

IID_SUCCESS or IID_INVALID_CRYPTOGRAM if successful, or IID_INVALID_PARAMETERS or
IID_NOT_ALLOWED otherwise

2.1.6.22. bk_maxsizeof_csr() iid_return_t bk_maxsizeof_csr (

const bk_ecc_private_key_code_t ∗const private_key_code,

const bool use_point_compression,

const bk_certificate_subject_t ∗const csr_subjects,

uint16_t ∗const maxcsr_length)

Precomputes the (maximum) byte size of a certificate signing request (CSR).

This function computes the maximum possible size a DER-encoded binary PKCS#10-formatted certificate signing
request (CSR) can have for a presented elliptic curve private key (code) and a given set of subject information fields
identifying the owner of that key.

Note

Due to a combination of the way DER-encoding works, and the non-determinism involved in the ECDSA-signature
on the CSR, the precise size in bytes of a CSR is also non-deterministic and can only be exactly determined once
the CSR is generated with bk_create_csr(). However, based on a given set of inputs, it is possible to precompute the
maximum possible byte size of the CSR, which is what bk_maxsizeof_csr() does. This is the size which needs to be
allocated in memory for the csr output buffer of bk_create_csr(). The exact byte size of a generated CSR is
returned by bk_create_csr() as csr_length.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have written the maximum size in bytes. On error the output buffer content is undefined

Parameters

in private_key_code Pointer to an input buffer for a bk_ecc_private_key_code_t which holds the elliptic
curve private key for which the CSR size needs to be computed.
Note: a private key code used for CSR creation shall have been created with
bk_create_private_key(), with purpose flags allowing its use for ECDSA operations.

in use_point_compression This flag is present for future use compatibility, but is not used for this product version
of BK. For this product version, this value has to be set to False (no point
compression). Any other values will result in the return code
IID_INVALID_PARAMETERS.

in csr_subjects Pointer to an input buffer for a bk_certificate_subject_t structure. The elements of this
structure contain the values which will be included in the distinguished name of the
CSR's Subject field.

out maxcsr_length Pointer to a uint16 which will hold the maximal possible size in bytes of a CSR
generated on the provided inputs with bk_create_csr().

https://tools.ietf.org/html/rfc2986

Returns

IID_SUCCESS if successful,or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED or
IID_INVALID_PRIVATE_KEY_CODE otherwise

2.1.6.23. bk_create_csr() iid_return_t bk_create_csr (

const bk_ecc_private_key_code_t ∗const private_key_code,

const bool use_point_compression,

const bk_certificate_subject_t ∗const csr_subjects,

uint8_t ∗const csr,

uint16_t ∗const csr_length)

Creates a certificate signing request (CSR) for an elliptic curve key pair.

This function creates a PKCS#10-formatted certificate signing request (CSR) for a presented elliptic curve private key
(code) and a limited set of subject information fields identifying the owner of that key. The CSR is returned as a
DER-encoded binary string.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have written the CSR as a DER-encoded byte sequence to the output buffer and have returned its size
in bytes. On error the output buffer content is undefined

Parameters

in private_key_code Pointer to an input buffer for a bk_ecc_private_key_code_t which holds the elliptic
curve private key for which a CSR will be created. The public key corresponding
to this private key will be included in the CSR, while the private key will be used to
(self-) sign the CSR.
Note: a private key code used for CSR generation shall have been created with
bk_create_private_key(), with purpose flags allowing its use for ECDSA
operations.

in use_point_compression This flag is present for future use compatibility, but is not used for this product
version of BK. For this product version, this value has to be set to False (no point
compression). Any other values will result in the return code
IID_INVALID_PARAMETERS.

in csr_subjects Pointer to an input buffer for a bk_certificate_subject_t structure. The elements of
this structure contain the values which will be included in the distinguished name
of the CSR's Subject field.

out csr Pointer to an output buffer of byte size csr_length, which will hold the
DER-encoded binary CSR.

in,out csr_length Pointer to an input/output buffer for a uint16, which as an input holds the allocated
size in bytes of the csr output buffer, and as an output (upon successful
execution) will hold the exact size in bytes of the returned CSR. The exact size of
a CSR is not entirely deterministic from its inputs, but the maximum possible size
(which needs to be allocated for csr) can be precomputed using
bk_maxsizeof_csr().

https://tools.ietf.org/html/rfc2986

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_INVALID_PRIVATE_KEY_CODE or IID_PKI_BUFFER_TOO_SMALL otherwise

2.1.6.24. bk_maxsizeof_selfsigned_certificate() iid_return_t bk_maxsizeof_selfsigned_certificate (

const bk_ecc_private_key_code_t ∗const private_key_code,

const bool use_point_compression,

const uint8_t ∗const serial,

const uint16_t serial_length,

const bk_certificate_subject_t ∗const ssc_subjects,

uint16_t ∗const maxcertificate_length)

Precomputes the (maximum) byte size of a self-signed certificate (SSC).

This function computes the maximum possible size a DER-encoded binary X.509-formatted self-signed certificate can
have for a presented elliptic curve private key (code) and a given set of certificate information fields and subject
information fields identifying the owner of that key.

Note

Due to a combination of the way DER-encoding works, and the non-determinism involved in the ECDSA-signature
on the self-signed certificate, the precise size in bytes of a self-signed certificate is also non-deterministic and can
only be exactly determined once the certificate is generated with bk_create_selfsigned_certificate(). However,
based on a given set of inputs, it is possible to precompute the maximum possible byte size of the certificate, which
is what bk_maxsizeof_selfsigned_certificate() does. This is the size which needs to be allocated in memory for the
cert output buffer of bk_create_selfsigned_certificate(). The exact byte size of a generated certificate is returned
by bk_create_selfsigned_certificate() as certificate_length.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have written the maximum size in bytes. On error the output buffer content is undefined

Parameters

in private_key_code Pointer to an input buffer for a bk_ecc_private_key_code_t which holds the elliptic
curve private key for which the self-signed certificate size needs to be computed.
Note: a private key code used for creating a self-signed certificate shall have been
created with bk_create_private_key(), with [purpose flags] (bk_defgroup_keypurpose)
allowing its use for ECDSA operations.

in use_point_compression This flag is present for future use compatibility, but is not used for this product version
of BK. For this product version, this value has to be set to False (no point
compression). Any other values will result in the return code
IID_INVALID_PARAMETERS.

https://tools.ietf.org/html/rfc5280

Parameters

in serial Pointer to an input buffer of byte size serial_length, which holds a binary string
which will (optionally) be included as the serial number of the generated certificate.
Note: this certificate serial number is not to be confused with the serial number which
can be part of the subject's distinguished name, which is passed in the
subject_sn field of ssc_subjects. The former is used to identify the certificate
itself, while the latter is (part of) the identity of the certificate's owner. If
serial_length is zero, serial must be zero.

in serial_length Value which specifies the size in bytes of the serial buffer.
Note: When this value is zero, no serial number field will be included in the generated
certificate. If message_length is zero, message must be zero.

in ssc_subjects Pointer to an input buffer for a bk_certificate_subject_t structure. The elements of this
structure contain the values which will be included in the distinguished name of the
certificate's Subject field.
Note: since this is a self-signed certificate, the same values will be included in the
Issuer's distinguished name as well.

out maxcertificate_length Pointer to a uint16 which will hold the maximal possible size in bytes of a self-signed
certificate generated on the provided inputs with bk_create_selfsigned_certificate().

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED or
IID_INVALID_PRIVATE_KEY_CODE otherwise

2.1.6.25. bk_create_selfsigned_certificate() iid_return_t bk_create_selfsigned_certificate (

const bk_ecc_private_key_code_t ∗const private_key_code,

const bool use_point_compression,

const uint8_t ∗const serial,

const uint16_t serial_length,

const char ∗const valid_start,

const char ∗const valid_end,

const bk_certificate_subject_t ∗const ssc_subjects,

uint8_t ∗const certificate,

uint16_t ∗const certificate_length)

Creates a self-signed certificate (SSC) for an elliptic curve key pair.

This function creates an X.509-formatted self-signed certificate for a presented elliptic curve private key (code) and a
limited set of certificate information fields and subject information fields identifying the owner of that key. The self-signed
certificate is returned as a DER-encoded binary string.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have written the SSC as a DER-encoded byte sequence to the output buffer and have returned its size
in bytes. On error the output buffer content is undefined

https://tools.ietf.org/html/rfc5280

Parameters

in private_key_code Pointer to an input buffer for a bk_ecc_private_key_code_t which holds the elliptic
curve private key for which a self-signed certificate will be created. The public key
corresponding to this private key will be included in the certificate, while the
private key will be used to (self-)sign the certificate.
Note: a private key code used for creating a self-signed certificate shall have
been created with bk_create_private_key(), with purpose flags allowing its use for
ECDSA operations.

in use_point_compression This flag is present for future use compatibility, but is not used for this product
version of BK. For this product version, this value has to be set to False (no point
compression). Any other values will result in the return code
IID_INVALID_PARAMETERS.

in serial Pointer to an input buffer of byte size serial_length, which holds a binary
string which will (optionally) be included as the serial number of the generated
certificate.
Note: this certificate serial number is not to be confused with the serial number
which can be part of the subject's distinguished name, which is passed in
subject_sn field of ssc_subjects. The former is used to identify the
certificate itself, while the latter is (part of) the identity of the certificate's owner. If
serial_length is zero, serial must be zero.

in serial_length Value which specifies the size in bytes of the serial buffer.
Note: When this value is zero, no serial number field will be included in the
generated certificate. If message_length is zero, message must be zero.

in valid_start Pointer to an input buffer of byte size 15 which holds a \0-terminated ASCII
character string specifying the start date of the certificate's Validity period. This
string needs to be formatted as "YYYYMMDDhhmmss".
Note: the presented string is interpreted and included in the certificate as GMT
date/time.

in valid_end Pointer to an input buffer of byte size 15 which holds a \0-terminated ASCII
character string specifying the end date of the certificate's Validity period. This
string needs to be formatted as "YYYYMMDDhhmmss".
Note: the presented string is interpreted and included in the certificate as GMT
date/time.

in ssc_subjects Pointer to an input buffer for a bk_certificate_subject_t structure. The elements of
this structure contain the values which will be included in the distinguished name
of the certificate's Subject field.
Note: since this is a self-signed certificate, the same values will be included in
the Issuer's distinguished name as well.

out certificate Pointer to an output buffer of byte size certificate_length, which will hold
the DER-encoded binary self-signed certificate.

in,out certificate_length Pointer to an input/output buffer for a uint16, which as an input holds the allocated
size in bytes of the certificate output buffer, and as an output (upon
successful execution) will hold the exact size in bytes of the returned certificate.
The exact size of a certificate is not entirely deterministic from its inputs, but the
maximum possible size (which needs to be allocated for certificate) can be
precomputed using bk_maxsizeof_selfsigned_certificate().

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_INVALID_PRIVATE_KEY_CODE or IID_PKI_BUFFER_TOO_SMALL otherwise

2.1.6.26. bk_write_ec_private_key() iid_return_t bk_write_ec_private_key (

const bk_ecc_curve_t curve,

uint8_t ∗const private_key,

uint8_t ∗const ECPrivateKey,

uint16_t ∗const ECPrivateKey_length)

Creates a DER-encoded representation of an elliptic curve private key and its associated public key following the
ECPrivateKey ASN.1 syntax specified in RFC 5915.

This function creates a DER-encoded representation of an elliptic curve private key and its associated public key following
the ECPrivateKey ASN.1 syntax specified in RFC 5915.
Note: This format is equal to OpenSSL output of an EC keypair generated with the option "-outform der"

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have written the private key as a DER-encoded byte sequence to the output buffer and have returned its
size in bytes. On error the output buffer content is undefined

Parameters

in curve Specifies the named elliptic curve on which the private key is defined. It must be a
valid curve type of the bk_ecc_curve_t enumeration.

in private_key Pointer to an input buffer which holds the raw binary elliptic curve private key (e.g.
as returned by bk_get_private_key()) to be written, with a size specified by the curve
parameter. For the given configuration, the buffer type bk_ecc_private_key_t can
hold all raw private keys.

out ECPrivateKey Pointer to an output buffer of byte size ECprivatekey_length, which will hold
the DER-encoded binary private key and its associated public key.

in,out ECPrivateKey_length Pointer to an input/output buffer for a uint16, which as an input holds the allocated
size in bytes of the ECPrivateKey output buffer, and as an output (upon
successful execution) will hold the exact size in bytes of the returned ECPrivateKey.
The exact size of an ECPrivateKey is determined by the used curve. For the given
configuration, the buffer type bk_der_private_key_info_t can hold all DER-encoded
representations of an elliptic curve private key .

Returns

IID_SUCCESS if successful, or IID_INVALID_PRIVATE_KEY, IID_INVALID_PARAMETERS, IID_NOT_ALLOWED
or IID_PKI_BUFFER_TOO_SMALL otherwise

https://tools.ietf.org/html/rfc5915
https://tools.ietf.org/html/rfc5915

2.1.6.27. bk_write_subject_public_key_info() iid_return_t bk_write_subject_public_key_info (

const bk_ecc_curve_t curve,

uint8_t ∗const std_public_key,

uint8_t ∗const subject_public_key_info,

uint16_t ∗const subject_public_key_info_length)

Creates a DER-encoded representation of an elliptic curve public key following the subject_public_key_info ASN.1 syntax
specified in RFC 5480.

This function creates a DER-encoded representation of an elliptic curve public key following the SubjectPublicKey ASN.1
syntax specified in RFC 5480 as can be used in X.509 certificates.
Note: This format is equal to OpenSSL public key output with the option "-pubout -outform der".

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have written the public key as a DER-encoded byte sequence to the output buffer and have returned its
size in bytes. On error the output buffer content is undefined

Parameters

in curve Specifies the named elliptic curve on which the public key is defined. It
must be a valid curve type of the bk_ecc_curve_t enumeration.

in std_public_key Pointer to an input buffer which holds the elliptic curve public key to be
written. The expected input is in X9.62 binary format (e.g. as returned by
bk_derive_public_key() or bk_export_public_key()). Its size in bytes is
determined by the used curve. For the given configuration, the buffer type
bk_ecc_std_public_key_t ∗ can hold all X9.62 binary format public keys.

out subject_public_key_info Pointer to an output buffer of byte size
subject_public_key_info_length, which will hold the
DER-encoded binary public key.

in,out subject_public_key_info_length Pointer to an input/output buffer for a uint16, which as an input holds the
allocated size in bytes of the subject_public_key_info output
buffer, and as an output (upon successful execution) will hold the exact
size in bytes of the returned subject_public_key_info. The exact size of an
subject_public_key_info is determined by the used curve. For the given
configuration, the buffer type bk_der_public_key_info_t can hold all
DER-encoded representations of an elliptic curve public key.

Returns

IID_SUCCESS if successful, or IID_INVALID_PUBLIC_KEY, IID_INVALID_PARAMETERS, IID_NOT_ALLOWED or
IID_PKI_BUFFER_TOO_SMALL otherwise.

https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5280

2.1.6.28. bk_write_ecdsa_sig_value() iid_return_t bk_write_ecdsa_sig_value (

const bk_ecc_curve_t curve,

const uint8_t ∗const signature,

uint8_t ∗const ecdsa_sig_value,

uint16_t ∗const ecdsa_sig_value_length)

Creates a DER-encoded representation of an ECDSA signature following the ECDSA-Sig-Value ASN.1 syntax specified
in RFC 3279.

This function creates a DER-encoded representation of an ECDSA signature following the ECDSA-Sig-Value ASN.1
syntax specified in RFC 3279 as can be used in X.509 certificates.
Note: This format is equal to the default OpenSSL ECDSA signature output.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have written the ECDSA signature as a DER-encoded byte sequence to the output buffer and have
returned its size in bytes. On error the output buffer content is undefined

Parameters

in curve Specifies the named elliptic curve on which the ECDSA signature was
generated. It must be a valid curve type of the bk_ecc_curve_t enumeration.

in signature Pointer to an input buffer which holds the raw binary ECDSA signature (e.g. as
returned by bk_ecdsa_sign()) to be written, with a size in bytes is determined by
the used curve. For the given configuration, the buffer type bk_ecc_signature_t
can hold all signatures.

out ecdsa_sig_value Pointer to an output buffer of byte size ecdsa_sig_value_length, which
will hold the DER-encoded binary ECDSA signature.

in,out ecdsa_sig_value_length Pointer to an input/output buffer for a uint16, which as an input holds the
allocated size in bytes of the ecdsa_sig_value output buffer, and as an
output (upon successful execution) will hold the exact size in bytes of the
returned ecdsa_sig_value. The exact size of an ecdsa_sig_value depends on the
used [curve] (bk_ecc_curve_t) as well as the signature data. For the given
configuration, the buffer type bk_der_sig_value_t can hold all DER-encoded
representations of an elliptic curve signature.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED or
IID_PKI_BUFFER_TOO_SMALL otherwise

https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc5280

2.1.6.29. bk_read_ec_private_key() iid_return_t bk_read_ec_private_key (

const uint8_t ∗const ECPrivateKey,

uint8_t ∗const private_key,

uint16_t ∗ private_key_length,

bk_ecc_curve_t ∗const curve)

Reads a DER-encoded representation of an elliptic curve private key and its associated public key following the
ECPrivateKey ASN.1 syntax specified in RFC 5915.

This function reads a DER-encoded representation of an elliptic curve private key and its associated public key following
the ECPrivateKey ASN.1 syntax specified in RFC 5915.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have read the private key and its associated X9.62 binary format public key from a DER-encoded byte
sequence to the output buffers and have returned the curve_id. On error the output buffer content is undefined. This
function can return an error for corrupted DER encoded input, but also if it refers to unsupported data or method
identifiers.

Parameters

in ECPrivateKey Pointer to an input buffer with the ECPrivateKey byte stream, which holds the
DER-encoded binary private key.

out private_key Pointer to an output buffer which will hold the read elliptic curve private key. The output
will be in raw format (e.g. as accepted by bk_create_private_key()).

in,out private_key_length Pointer to an input/output buffer for a uint16, which as an input holds the allocated size
in bytes of the private_key output buffer, and as an output (upon successful
execution) will hold the exact size in bytes of the returned private key. The size of the
private key is determined by the elliptic curve ID which is encoded in the DER input.
For the given configuration, the buffer type bk_ecc_private_key_t can hold all raw
private keys.

out curve Pointer to a buffer to hold the specifier of the named elliptic curve on which the private
key is defined. It must be a valid curve type of the bk_ecc_curve_t enumeration.

Returns

IID_SUCCESS if successful, or IID_INVALID_PRIVATE_KEY, IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_PKI_INVALID_DER_INPUT or IID_PKI_BUFFER_TOO_SMALL otherwise

2.1.6.30. bk_read_subject_public_key_info() iid_return_t bk_read_subject_public_key_info (

const uint8_t ∗const subject_public_key_info,

https://tools.ietf.org/html/rfc5915
https://tools.ietf.org/html/rfc5915

uint8_t ∗const std_public_key,

uint16_t ∗ std_public_key_length,

bk_ecc_curve_t ∗const curve)

Reads a DER-encoded representation of an elliptic curve public key following the subject_public_key_info ASN.1 syntax
specified in RFC 5480.

This function reads a DER-encoded representation of an elliptic curve public key following the SubjectPublicKey ASN.1
syntax specified in RFC 5480, as can be used in X.509 certificates.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have read the public key from a DER-encoded byte sequence to the output buffer and have returned the
curve_id. On error the output buffer content is undefined. This function can return an error for corrupted DER
encoded input, but also if it refers to unsupported data or method identifiers.

Parameters

in subject_public_key_info Pointer to an input buffer with the subject_public_key_info byte stream, which
holds the DER-encoded binary public key.

out std_public_key Pointer to an output buffer which will hold the read elliptic curve public key. The
output will be in X9.62 binary format (e.g. as accepted by
bk_import_public_key()).

in,out std_public_key_length Pointer to an input/output buffer for a uint16, which as an input holds the allocated
size in bytes of the std_public_key output buffer, and as an output (upon
successful execution) will hold the exact size in bytes of the returned public key.
The size of the public key is determined by the elliptic curve ID which is encoded
in the DER input. For the given configuration, the buffer type
bk_ecc_std_public_key_t can hold all X9.62 binary format public keys.

out curve Pointer to a buffer to hold the specifier of the named elliptic curve on which the
X9.62 binary format public key is defined. It must be a valid curve type of the
bk_ecc_curve_t enumeration.

Returns

IID_SUCCESS if successful, or IID_INVALID_PUBLIC_KEY, IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_PKI_INVALID_DER_INPUT or IID_PKI_BUFFER_TOO_SMALL otherwise

2.1.6.31. bk_read_ecdsa_sig_value() iid_return_t bk_read_ecdsa_sig_value (

const bk_ecc_curve_t curve,

https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5280

const uint8_t ∗const ecdsa_sig_value,

uint8_t ∗const signature)

Reads a DER-encoded representation of an ECDSA signature following the ECDSA-Sig-Value ASN.1 syntax specified in
RFC 3279.

This function reads a DER-encoded representation of an ECDSA signature following the ECDSA-Sig-Value ASN.1 syntax
specified in RFC 3279, as is used in X.509 certificates.

Precondition

A call to this function is only allowed when BK is in the Enrolled or Started state. Called from any other operational
state, this function will return immediately with return code IID_NOT_ALLOWED, without taking any action.

Postcondition

A call to this function will not change the operational state of BK. If successful, signalled by IID_SUCCESS, this
function will have read the ECDSA signature from a DER-encoded byte sequence to the output buffer and have
returned its size in bytes. On error the output buffer content is undefined. This function can return an error for
corrupted DER encoded input, but also if it refers to unsupported data or method identifiers.

Parameters

in curve Specifies the named elliptic curve on which the ECDSA signature was generated. It must be
a valid curve type of the bk_ecc_curve_t enumeration.
Note: this reader function needs to know the curve on which the signature was generated in
order to correctly parse it (since the DER signature itself does not contain the curve
information). The (expected) curve can be obtained from the public key (code) with which
one intends to validate this signature.

in ecdsa_sig_value Pointer to an input buffer holding the DER-encoded binary ECDSA signature.

out signature Pointer to an output buffer which will hold the ECDSA signature (e.g. as accepted by
bk_ecdsa_verify()) to be read, with a size in bytes determined by the used [curve]
(bk_ecc_curve_t). For the given configuration, the buffer type bk_ecc_signature_t can hold
all signatures.

Returns

IID_SUCCESS if successful, or IID_INVALID_PARAMETERS, IID_NOT_ALLOWED,
IID_PKI_INVALID_DER_INPUT or IID_PKI_BUFFER_TOO_SMALL otherwise

2.2. Return Codes

Return codes returned by the top-level functions.

Enumerations

• enum iid_return_base_t {
IID_RETURN_BASE = 0x01u ,

https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc5280

IID_RETURN_BK = 0x20u ,
IID_RETURN_ECC = 0x30u ,
IID_RETURN_PKI = 0x40u ,
IID_AES_BASE = 0xE0u }

Return code base values per component.
• enum iid_return_t {

IID_SUCCESS = 0x00u ,
IID_NOT_ALLOWED = ((uint32_t) IID_RETURN_BASE + 0x00u) ,
IID_INVALID_PARAMETERS = ((uint32_t) IID_RETURN_BASE + 0x01u) ,
IID_NO_FREE_HANDLE = ((uint32_t) IID_RETURN_BASE + 0x02u) ,
IID_INVALID_HANDLE = ((uint32_t) IID_RETURN_BASE + 0x03u) ,
IID_INVALID_CONTEXT = ((uint32_t) IID_RETURN_BASE + 0x04u) ,
IID_INVALID_MAC = ((uint32_t) IID_RETURN_BASE + 0x05u) ,
IID_DATA_EXCEPTION = ((uint32_t) IID_RETURN_BASE + 0x0Du) ,
IID_PROGRAM_EXCEPTION = ((uint32_t) IID_RETURN_BASE + 0x0Eu) ,
IID_DEVICE_EXCEPTION = ((uint32_t) IID_RETURN_BASE + 0x0Fu) ,
IID_ERROR_STARTUP_DATA = ((uint32_t) IID_RETURN_BK + 0x00u) ,
IID_INVALID_AC = ((uint32_t) IID_RETURN_BK + 0x01u) ,
IID_INVALID_KEY_CODE = ((uint32_t) IID_RETURN_BK + 0x02u) ,
IID_SYM_NOT_ALLOWED = ((uint32_t) IID_RETURN_BK + 0x03u) ,
IID_INVALID_SYMMETRIC_KEY_CODE = ((uint32_t) IID_RETURN_BK + 0x04u) ,
IID_INVALID_PRIVATE_KEY = ((uint32_t)(IID_RETURN_ECC + 0x00)) ,
IID_INVALID_PUBLIC_KEY = ((uint32_t)(IID_RETURN_ECC + 0x01)) ,
IID_INVALID_SIGNATURE = ((uint32_t)(IID_RETURN_ECC + 0x02)) ,
IID_INVALID_PUBLIC_KEY_CODE = ((uint32_t)(IID_RETURN_ECC + 0x03)) ,
IID_INVALID_PRIVATE_KEY_CODE = ((uint32_t)(IID_RETURN_ECC + 0x04)) ,
IID_ECC_NOT_ALLOWED = ((uint32_t)(IID_RETURN_ECC + 0x05)) ,
IID_CURVE_MISMATCH = ((uint32_t)(IID_RETURN_ECC + 0x09)) ,
IID_INVALID_COUNTER = ((uint32_t)(IID_RETURN_ECC + 0x06)) ,
IID_INVALID_CRYPTOGRAM = ((uint32_t)(IID_RETURN_ECC + 0x07)) ,
IID_INVALID_SENDER = ((uint32_t)(IID_RETURN_ECC + 0x08)) ,
IID_PKI_BUFFER_TOO_SMALL = ((uint32_t)(IID_RETURN_PKI + 0x00)) ,
IID_PKI_INVALID_DER_INPUT = ((uint32_t)(IID_RETURN_PKI + 0x01)) ,
IID_BUSY = 0xFFu ,
IID_RETURN_ENUM_32BITS = 0xFFFFFFFFu }

Return code values.

2.2.1. Detailed Description

Return codes returned by the top-level functions.

These return codes are used by the functions to return status information. They are grouped by component, which helps
users to better understand the root cause of a potential issue when running the product.

2.2.2. Enumeration Type Documentation

2.2.2.1. iid_return_base_t enum iid_return_base_t

Return code base values per component.

Enumerator

IID_RETURN_BASE Generic return codes base. Value used internally as the base value for all generic return codes.

IID_RETURN_BK BK basic operation return codes base. Value used internally as the base value for all BK's basic
operation specific return codes.

IID_RETURN_ECC BK elliptic curve operations return codes base. Value used internally as the base value for all
BK's ECC specific return codes.

IID_RETURN_PKI BK PKI operations return codes base. Value used internally as the base value for all BK's PKI
specific return codes.

IID_AES_BASE AES return codes base. Value used internally as the base value for all AES return codes

2.2.2.2. iid_return_t enum iid_return_t

Return code values.

Enumerator

IID_SUCCESS Successful execution. The called function ran successfully.

IID_NOT_ALLOWED Successful execution. The given function call is not allowed in the current
state.

IID_INVALID_PARAMETERS Invalid function parameters. At least one of the parameters passed as
argument to the function call has an invalid form and/or content. This also
occurs when one of the required output buffers contains a NULL pointer, or
when one of the provided length parameters is not long enough.

IID_NO_FREE_HANDLE No free handle available. A handle cannot be allocated for the specified
streaming interface.

IID_INVALID_HANDLE Invalid streaming interface handle. The streaming interface handle provided
to this function does not point to an existing and opened streaming
interface, or a call to open a new streaming interface could not allocate
sufficient memory for creating it.

IID_INVALID_CONTEXT Invalid streaming interface context. The context pointed by the provided
handle does not exist, has been closed, or is corrupted

IID_INVALID_MAC Authentication of streaming interface data failed. A call to close a streaming
interface with an authentication verification (e.g. a MAC or ECIES stream)
ends with a data authentication failure of the processed stream, thus a sign
of data corruption.

IID_DATA_EXCEPTION Program data error. The internal program data is corrupted or
undetermined.

IID_PROGRAM_EXCEPTION Program flow error. The internal program state is corrupted or
undetermined.

IID_DEVICE_EXCEPTION Device integrity error. The internal device state is corrupted or
undetermined.

Enumerator

IID_ERROR_STARTUP_DATA Error startup data. The appointed SRAM address does not contain
qualitative start-up data that can be used as an SRAM PUF by BK.

Remarks

This return value with high likelihood indicates a blocking error, since
one is not able to get out of the current state (recalling the operation
that returned this value will likely just return the same error code). A
device repower is anyway required to get out of this situation, in
combination with a resolution of the cause of this problem, if possible.

IID_INVALID_AC Invalid activation code. The activation code provided to bk_start() is not
valid for this device, i.e. it was not generated by a successful call to
bk_enroll() on the same device.

IID_INVALID_KEY_CODE Invalid key code. The key code provided to bk_unwrap() or
bk_create_symmetric_key() is not valid for this device, i.e. it was not
generated by a successful call to bk_wrap() on the same device in the same
cryptographic context.

IID_SYM_NOT_ALLOWED Presented symmetric key code is not allowed to be used for this operation.
The provided symmetric key code input does not have the right [key purpose
flags](bk_defgroup_keypurpose) set for being used by the called function.

IID_INVALID_SYMMETRIC_KEY_CODE Invalid symmetric key code. The provided symmetric key code input is not
valid for the called function on this device, i.e. it was not generated by
bk_create_symmetric_key() on this device.

IID_INVALID_PRIVATE_KEY Invalid private key value. The provided private key (to
bk_create_private_key() or bk_derive_public_key()) is invalid for the
specified elliptic curve.

IID_INVALID_PUBLIC_KEY Invalid public key value. The provided public key (to bk_import_public_key())
is invalid for the specified elliptic curve.

IID_INVALID_SIGNATURE Invalid signature. The signature input provided to bk_ecdsa_verify() is not
valid for the provided message under the provided public key.

IID_INVALID_PUBLIC_KEY_CODE Invalid public key code. The provided public key code is not valid for the
called function on this device, i.e. it was not generated by
bk_compute_public_from_private_key() or bk_import_public_key() on this
device.

IID_INVALID_PRIVATE_KEY_CODE Invalid private key code. The provided private key code is not valid for the
called function on this device, i.e. it was not generated by
bk_create_private_key() on this device.

IID_ECC_NOT_ALLOWED Presented elliptic curve key code is not allowed to be used for this
operation. The provided private and/or public key code inputs do not have
the right [key purpose flags](bk_defgroup_keypurpose) set for being used
by the called function.

IID_CURVE_MISMATCH Curve mismatch. The elliptic curves in the simultaneously provided private
and public key code do not match.

IID_INVALID_COUNTER Invalid cryptogram counter. The counter64 input provided to
bk_generate_cryptogram() results in a counter overflow, or the
counter64 input provided to bk_process_cryptogram() is not smaller
than or equal to the counter value contained in the received cryptogram.
The latter indicates that there is an attempt to process a cryptogram that is
the same or older than a previously processed one.

Enumerator

IID_INVALID_CRYPTOGRAM Invalid cryptogram. The provided cryptogram input to
bk_process_cryptogram() or bk_get_public_key_from_cryptogram() is not a
valid cryptogram, e.g. it has the wrong type, format, or its integrity was
compromised.

IID_INVALID_SENDER Invalid sender of cryptogram. The provided public key code to
bk_process_cryptogram() does not match the public key of the cryptogram's
sender, i.e. the cryptogram did not originate from the expected source.

IID_PKI_BUFFER_TOO_SMALL Insufficient PKI output buffer space. The provided output buffer for the
requested PKI structure (CSR of self-signed certificate) is too small to hold
all data.

IID_PKI_INVALID_DER_INPUT Invalid DER input. The provided DER encoded byte stream is either
corrupted or holds unsupported data or method indicators.

IID_BUSY Busy executing. The execution of the called function has not terminated.

IID_RETURN_ENUM_32BITS Unused value, placed here to force the compiler to use 32 bits to represent
values of this type.

2.3. Compiler Attributes

Compiler Attributes (for alignment and data packing)

Macros

• #define EXPLICIT_FALLTHROUGH
Attribute macro to avoid implicit fallthrough warnings.

• #define PRE_PACKED
Macro to force packing of data structures (prefix)

• #define POST_PACKED __attribute__ ((packed))
Macro to force packing of data structures (postfix)

• #define PRE_ALIGN32
Macro to force memory alignment on 32-bit (prefix)

• #define PRE_ALIGN64
Macro to force memory alignment on 64-bit (prefix)

• #define PRE_ALIGN128
Macro to force memory alignment on 128-bit (prefix)

• #define PRE_ALIGN
Macro to force memory alignment on the platform word size (prefix)

• #define POST_ALIGN32 __attribute__((aligned(4)))
Macro to force memory alignment on 32-bit (postfix)

• #define POST_ALIGN64 __attribute__((aligned(8)))
Macro to force memory alignment on 64-bit (postfix)

• #define POST_ALIGN128 __attribute__((aligned(16)))
Macro to force memory alignment on 128-bit (postfix)

• #define POST_ALIGN __attribute__((aligned(4)))
Macro to force memory alignment on the platform word size (postfix)

2.3.1. Detailed Description

Compiler Attributes (for alignment and data packing)

2.3.2. Macro Definition Documentation

2.3.2.1. EXPLICIT_FALLTHROUGH #define EXPLICIT_FALLTHROUGH

Attribute macro to avoid implicit fallthrough warnings.

2.3.2.2. PRE_PACKED #define PRE_PACKED

Macro to force packing of data structures (prefix)

2.3.2.3. POST_PACKED #define POST_PACKED __attribute__ ((packed))

Macro to force packing of data structures (postfix)

2.3.2.4. PRE_ALIGN32 #define PRE_ALIGN32

Macro to force memory alignment on 32-bit (prefix)

2.3.2.5. PRE_ALIGN64 #define PRE_ALIGN64

Macro to force memory alignment on 64-bit (prefix)

2.3.2.6. PRE_ALIGN128 #define PRE_ALIGN128

Macro to force memory alignment on 128-bit (prefix)

2.3.2.7. PRE_ALIGN #define PRE_ALIGN

Macro to force memory alignment on the platform word size (prefix)

Examples

iid_bk_examples_standalone.c, and iid_bk_examples_wolfssl.c.

2.3.2.8. POST_ALIGN32 #define POST_ALIGN32 __attribute__((aligned(4)))

Macro to force memory alignment on 32-bit (postfix)

2.3.2.9. POST_ALIGN64 #define POST_ALIGN64 __attribute__((aligned(8)))

Macro to force memory alignment on 64-bit (postfix)

2.3.2.10. POST_ALIGN128 #define POST_ALIGN128 __attribute__((aligned(16)))

Macro to force memory alignment on 128-bit (postfix)

2.3.2.11. POST_ALIGN #define POST_ALIGN __attribute__((aligned(4)))

Macro to force memory alignment on the platform word size (postfix)

Examples

iid_bk_examples_standalone.c, and iid_bk_examples_wolfssl.c.

3. Example Documentation

3.1. iid_bk_examples_standalone.c
/*
* Copyright 2022 Intrinsic ID B.V. All rights reserved.

*
* Usage of this software is permitted under a valid written license agreement

* between you and Intrinsic ID B.V.

*/
/*

This example shows how to use some functions of BK
(init, enroll, start, stop, get_key, get_private_key)

*/
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "iid_bk.h"
#include "iid_bk_examples_data.h"
/* Define the start address of the SRAM used for BK */
#define SRAM_PUF_ADDRESS &sram_example
/* Define the start address of the AC in NVM */
#define AC_NVM_ADDRESS 0x12345678
void write_to_nvm()
{}
/*

!!!!!!!!!

IMPORTANT:
Each of these example functions assumes BK is in Uninitialized state at the beginning of the example function

!!!!!!!!!

*/
int iid_bk_example_init(void)
{

iid_return_t ret_val;
/***********************
* Initialize BK *
***********************/
ret_val = bk_init(

(uint8_t * const) SRAM_PUF_ADDRESS,
BK_SRAM_PUF_SIZE_BYTES);

if (IID_SUCCESS != ret_val) {
/* ... handle error ... */
printf("Error: bk_init - %u\n", ret_val);
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}
int iid_bk_example_enroll_stop(void)
{

iid_return_t ret_val;
/* PRE_ALIGN and POST_ALIGN macros can be used to align a variable address to 32 bits */
PRE_ALIGN uint8_t activation_code[BK_AC_SIZE_BYTES] POST_ALIGN;
/***********************
* Initialize BK *
***********************/
ret_val = bk_init(

(uint8_t * const) SRAM_PUF_ADDRESS,
BK_SRAM_PUF_SIZE_BYTES);

if (IID_SUCCESS != ret_val) {
/* ... handle error ... */
printf("Error: bk_init - %u\n", ret_val);
return EXIT_FAILURE;

}
/*********************
* Enroll the Device *
*********************/
ret_val = bk_enroll(activation_code);
if (IID_SUCCESS != ret_val) {

/* ... handle error ... */
printf("Error: bk_enroll - %u\n", ret_val);
return EXIT_FAILURE;

}
/*****************
* Stop BK *
*****************/
ret_val = bk_stop();
if (IID_SUCCESS != ret_val) {

/* ... handle error ... */
printf("Error: bk_stop - %u\n", ret_val);
return EXIT_FAILURE;

}
/* Store the AC in NVM */
write_to_nvm(AC_NVM_ADDRESS, activation_code, BK_AC_SIZE_BYTES);
return EXIT_SUCCESS;

}
int iid_bk_example_start_stop(void)
{

/* Enrollment must have been performed before the following code, as shown in the previous example */
iid_return_t ret_val;
/***********************
* Initialize BK *
***********************/
ret_val = bk_init(

(uint8_t * const) SRAM_PUF_ADDRESS,
BK_SRAM_PUF_SIZE_BYTES);

if (IID_SUCCESS != ret_val) {
/* ... handle error ... */
printf("Error: bk_init - %u\n", ret_val);
return EXIT_FAILURE;

}
/******************
* Start BK *
******************/
ret_val = bk_start(activation_code_example);
if (IID_SUCCESS != ret_val) {

/* ... handle error ... */
printf("Error: bk_start - %u\n", ret_val);
return EXIT_FAILURE;

}
/*****************
* Stop BK *

*****************/
ret_val = bk_stop();
if (IID_SUCCESS != ret_val) {

/* ... handle error ... */
printf("Error: bk_stop - %u\n", ret_val);
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}
int iid_bk_example_get_key(void)
{

/* To call bk_get_key, BK must be in Enrolled or Started state.
For this example, we put BK in Started state before calling bk_get_key.

*/
iid_return_t ret_val;
/***********************
* Initialize BK *
***********************/
ret_val = bk_init(

(uint8_t * const) SRAM_PUF_ADDRESS,
BK_SRAM_PUF_SIZE_BYTES);

if (IID_SUCCESS != ret_val) {
/* ... handle error ... */
printf("Error: bk_init - %u\n", ret_val);
return EXIT_FAILURE;

}
/******************
* Start BK *
******************/
ret_val = bk_start(activation_code_example);
if (IID_SUCCESS != ret_val) {

/* ... handle error ... */
printf("Error: bk_start - %u\n", ret_val);
return EXIT_FAILURE;

}
/************
* Get Key *
************/
uint8_t key_type = BK_SYM_KEY_TYPE_256;
uint8_t index = 0;
uint8_t key[32];
ret_val = bk_get_key(key_type, index, key);
if (IID_SUCCESS != ret_val) {

/* ... handle error ... */
printf("Error: bk_get_key - %u\n", ret_val);
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}
int iid_bk_example_get_private_key(void)
{

/* To call bk_get_private_key, BK must be in Enrolled or Started state.
For this example, we put BK in Started state before calling bk_get_private_key.

*/
iid_return_t ret_val;
bk_ecc_curve_t curve = BK_ECC_CURVE_NIST_P256;
/* PRE_ALIGN and POST_ALIGN macros can be used to align a variable address to 32 bits */
PRE_ALIGN uint8_t private_key[BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_BYTES] POST_ALIGN;
/***********************
* Initialize BK *
***********************/
ret_val = bk_init(

(uint8_t * const) SRAM_PUF_ADDRESS,
BK_SRAM_PUF_SIZE_BYTES);

if (IID_SUCCESS != ret_val) {
/* ... handle error ... */
printf("Error: bk_init - %u\n", ret_val);
return EXIT_FAILURE;

}
/******************
* Start BK *
******************/
ret_val = bk_start(activation_code_example);
if (IID_SUCCESS != ret_val) {

/* ... handle error ... */
printf("Error: bk_start - %u\n", ret_val);
return EXIT_FAILURE;

}
/*******************
* Get Private Key *
*******************/
ret_val = bk_get_private_key(

curve,
NULL, /* no usage_context is used */
0, /* no usage context is used */
BK_KEY_SOURCE_PUF_DERIVED,
private_key);

if (IID_SUCCESS != ret_val) {
/* ... handle error ... */
printf("Error: bk_get_private_key - %u\n", ret_val);
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}
int iid_bk_example_generate_random(void)
{

/* To call bk_generate_random, BK must be in Enrolled or Started state.
For this example, we put BK in Started state before calling bk_generate_random.

*/
iid_return_t ret_val;
/***********************
* Initialize BK *
***********************/
ret_val = bk_init(

(uint8_t * const) SRAM_PUF_ADDRESS,
BK_SRAM_PUF_SIZE_BYTES);

if (IID_SUCCESS != ret_val) {
/* ... handle error ... */
printf("Error: bk_init - %u\n", ret_val);
return EXIT_FAILURE;

}
/******************
* Start BK *
******************/
ret_val = bk_start(activation_code_example);
if (IID_SUCCESS != ret_val) {

/* ... handle error ... */
printf("Error: bk_start - %u\n", ret_val);
return EXIT_FAILURE;

}
/*******************
* Generate Random *
*******************/
uint8_t data_buffer[32];
ret_val = bk_generate_random(32, data_buffer);
if (IID_SUCCESS != ret_val) {

/* ... handle error ... */
printf("Error: bk_generate_random - %u\n", ret_val);
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

3.2. iid_bk_examples_mbedtls.c
/*
* Copyright 2022 Intrinsic ID B.V. All rights reserved.

*
* Usage of this software is permitted under a valid written license agreement

* between you and Intrinsic ID B.V.

*/
/*

This example shows how BK can be used to generate a PUF-derived elliptic curve key pair.
This key pair is then used by Mbed TLS to compute an ECDSA signature.
This code is compatible with Mbed TLS v2.x and v3.x.

*/
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "iid_bk.h"
#include "iid_attributes.h"
#include "mbedtls/version.h"
#if (MBEDTLS_VERSION_MAJOR == 3)
#include "mbedtls/compat-2.x.h"
#else
#include "mbedtls/ecp.h"
#define MBEDTLS_PRIVATE(member) member
typedef enum {

ECP_TYPE_NONE = 0,
ECP_TYPE_SHORT_WEIERSTRASS, /* y^2 = x^3 + a x + b */

ECP_TYPE_MONTGOMERY, /* y^2 = x^3 + a x^2 + x */
} ecp_curve_type;
/*
* Get the type of a curve

*/
static inline ecp_curve_type ecp_get_type(const mbedtls_ecp_group * grp)
{

if (grp->G.X.p == NULL)
return(ECP_TYPE_NONE);

if (grp->G.Y.p == NULL)
return(ECP_TYPE_MONTGOMERY);

else
return(ECP_TYPE_SHORT_WEIERSTRASS);

}
#endif
#include "mbedtls/ecdsa.h"
#include "mbedtls/sha256.h"
#include "mbedtls/platform.h"
#include "mbedtls/aes.h"
#include "iid_bk_examples_data.h"
#if !defined(MBEDTLS_ECDSA_C)
#error MBEDTLS_ECDSA_C must be defined
#endif
#if !defined(MBEDTLS_SHA256_C)
#error MBEDTLS_SHA256_C must be defined
#endif
/* Use secp256r1 curve */
#define ECPARAMS MBEDTLS_ECP_DP_SECP256R1
/***
* H E L P E R F U N C T I O N S *
***/
/* This function converts an Mbed TLS group ID to a BK curve ID */
bk_ecc_curve_t get_bk_curve_from_mbedtls_group_id(mbedtls_ecp_group_id mbedtls_group_id)
{

bk_ecc_curve_t bk_curve;
switch(mbedtls_group_id)
{

#ifdef BK_ECC_CURVE_SECP192R1_PRIVATE_KEY_BYTES
case MBEDTLS_ECP_DP_SECP192R1:

bk_curve = BK_ECC_CURVE_NIST_P192;
break;

#endif
#ifdef BK_ECC_CURVE_SECP224R1_PRIVATE_KEY_BYTES

case MBEDTLS_ECP_DP_SECP224R1:
bk_curve = BK_ECC_CURVE_NIST_P224;
break;

#endif
#ifdef BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_BYTES

case MBEDTLS_ECP_DP_SECP256R1:
bk_curve = BK_ECC_CURVE_NIST_P256;
break;

#endif
#ifdef BK_ECC_CURVE_SECP256K1_PRIVATE_KEY_BYTES

case MBEDTLS_ECP_DP_SECP256K1:
bk_curve = BK_ECC_CURVE_NIST_K256;
break;

#endif
#ifdef BK_ECC_CURVE_SECP384R1_PRIVATE_KEY_BYTES

case MBEDTLS_ECP_DP_SECP384R1:
bk_curve = BK_ECC_CURVE_NIST_P384;
break;

#endif
#ifdef BK_ECC_CURVE_SECP521R1_PRIVATE_KEY_BYTES

case MBEDTLS_ECP_DP_SECP521R1:
bk_curve = BK_ECC_CURVE_NIST_P521;
break;

#endif
default:

bk_curve = -1;
break;

}
return bk_curve;

}
/* This function:

- uses BK to generate a PUF-derived (deterministic) private key
- stores this key in an Mbed TLS MPI

*/
int iid_bk_get_puf_derived_mbedtls_privkey(

const mbedtls_ecp_group * grp,
mbedtls_mpi * d,
const uint8_t * usage_context,
uint32_t usage_context_length)

{
bk_ecc_curve_t bk_curve;
iid_return_t iid_ret_val;
int mbedtls_ret_val;

#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) /*Mbed TLS v3 */
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {

return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
}

#elif (MBEDTLS_VERSION_MAJOR == 2) /* Mbed TLS v2 */
if (ecp_get_type(grp) == ECP_TYPE_MONTGOMERY) {

return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
}

#endif
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) /* Mbed TLS v3 */

if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
#elif (MBEDTLS_VERSION_MAJOR == 2) /* Mbed TLS v2 */

if (ecp_get_type(grp) == ECP_TYPE_SHORT_WEIERSTRASS) {
#endif

mbedtls_mpi_grow(d, grp->N.MBEDTLS_PRIVATE(n));
bk_curve = get_bk_curve_from_mbedtls_group_id(grp->id);
assert(((size_t) d->MBEDTLS_PRIVATE(p)) % sizeof(int) == 0);
iid_ret_val = bk_get_private_key(

bk_curve,
usage_context,
usage_context_length,
BK_KEY_SOURCE_PUF_DERIVED,
(uint8_t *) d->MBEDTLS_PRIVATE(p));

if (IID_SUCCESS == iid_ret_val) {
mbedtls_ret_val = MBEDTLS_EXIT_SUCCESS;

} else {
mbedtls_ret_val = MBEDTLS_EXIT_FAILURE;

}
return mbedtls_ret_val;

}
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;

}
/* This function is an Mbed TLS-compatible callback function using BK’s Random Number Generator.

Some Mbed TLS function can be given a pointer to a RNG callback function (e.g. mbedtls_ecdsa_genkey),
this function can be used for the f_rng parameter, with a NULL context for p_rng.

For example, to generate a random key pair using Mbed TLS and BK, the following call can be used:
mbedtls_ecdsa_genkey(&ctx, ECPARAMS, iid_zrng_mbedtls_wrapper, NULL);

*/
int iid_bk_generate_random_mbedtls_wrapper(

void * p_rng,
unsigned char * output,
size_t output_len)

{
iid_return_t iid_ret_val;
int mbedtls_ret_val;
/* No context required */
(void) p_rng;
assert(output_len <= UINT16_MAX);
iid_ret_val = bk_generate_random((uint16_t) output_len, output);
if (IID_SUCCESS == iid_ret_val) {

mbedtls_ret_val = MBEDTLS_EXIT_SUCCESS;
} else {

mbedtls_ret_val = MBEDTLS_EXIT_FAILURE;
}
return mbedtls_ret_val;

}
/*

!!!!!!!!!

IMPORTANT:
Each of these example functions assumes BK is in Uninitialized state at the beginning of the example function

!!!!!!!!!

*/
/***
* E X A M P L E C O D E *
***/
/* This function is the ’main’ function of this example file.

It:
- initializes BK (using an SRAM image for the example)
- starts BK (using a pre-generated activation code for the example)
- generates a Mbed TLS private key (using BK)
- computes the associated public key
- computes an ECDSA signature over a given message using the key pair
- verifies the generated ECDSA signature

*/

int iid_bk_example_mbedtls_ecdsa_signature(void)
{

int ret_val;
iid_return_t iid_ret_val;
int mbedtls_ret_val = MBEDTLS_EXIT_FAILURE;
mbedtls_ecdsa_context ctx_sign, ctx_verify;
uint8_t hash[32];
uint8_t signature[MBEDTLS_ECDSA_MAX_LEN] = {0};
size_t signature_length;
mbedtls_ecdsa_init(&ctx_sign);
mbedtls_ecdsa_init(&ctx_verify);
/****************************
* Initialize and start BK *
****************************/
/* This example uses a fixed SRAM image, but a real-case scenario requires uninitialized SRAM */
iid_ret_val = bk_init(sram_example, sizeof(sram_example));
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: bk_init - %u\n", iid_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/* This example assumes an activation code was generated previously during the enrollment phase */
iid_ret_val = bk_start(activation_code_example);
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: bk_start - %u\n", iid_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/***
* Generate a key pair for the signature *
***/
mbedtls_ret_val = mbedtls_ecp_group_load(&(ctx_sign.MBEDTLS_PRIVATE(grp)), ECPARAMS);
if (IID_SUCCESS != mbedtls_ret_val) {

/* ... handle error ... */
printf("Error: mbedtls_ecp_group_load - %d\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/* Generate a PUF-derived (deterministic) private key (under the form of an Mbed TLS MPI) using BK.

For this example, we are using an empty usage context,
but users may choose anything else for the usage context if they need to generate multiple keys.

*/
mbedtls_ret_val = iid_bk_get_puf_derived_mbedtls_privkey(

&(ctx_sign.MBEDTLS_PRIVATE(grp)),
&(ctx_sign.MBEDTLS_PRIVATE(d)),
NULL, /* no usage_context is used */
0); /* no usage_context is used */

if (MBEDTLS_EXIT_SUCCESS != mbedtls_ret_val) {
/* ... handle error ... */
printf("Error: iid_bk_get_puf_derived_mbedtls_privkey - %d\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/* Compute public key (from private key generated above) */
mbedtls_ret_val = mbedtls_ecp_mul(

&(ctx_sign.MBEDTLS_PRIVATE(grp)),
&(ctx_sign.MBEDTLS_PRIVATE(Q)),
&(ctx_sign.MBEDTLS_PRIVATE(d)),
&(ctx_sign.MBEDTLS_PRIVATE(grp).G),
iid_bk_generate_random_mbedtls_wrapper,
NULL);

if (MBEDTLS_EXIT_SUCCESS != mbedtls_ret_val) {
/* ... handle error ... */
printf("Error: mbedtls_ecp_mul - %d\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/***
* Compute the SHA-256 hash of the message *
***/
mbedtls_ret_val = mbedtls_sha256_ret(message_example, sizeof(message_example), hash, 0);
if (MBEDTLS_EXIT_SUCCESS != mbedtls_ret_val) {

/* ... handle error ... */
printf("Error: mbedtls_sha256 - %d\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/***
* Compute ECDSA signature over the message hash *
***/

/* This function also uses BK as a Random Number Generator for the ECDSA signature
(by using the iid_bk_generate_random_mbedtls_wrapper callback function)

*/
mbedtls_ret_val = mbedtls_ecdsa_write_signature(

&ctx_sign,
MBEDTLS_MD_SHA256,
hash,
sizeof(hash),
signature,

#if (MBEDTLS_VERSION_MAJOR == 3)
sizeof(signature),

#endif
&signature_length,
iid_bk_generate_random_mbedtls_wrapper,
NULL);

if (MBEDTLS_EXIT_SUCCESS != mbedtls_ret_val) {
/* ... handle error ... */
printf("Error: mbedtls_ecdsa_write_signature - %d\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/***
* Create a separate verifying context *
***/
/* Technically speaking a signature verification could be performed using ctx_sign,

but for the sake of completeness this example uses a separate verification context ctx_verify,
which only contains the public key.

*/
mbedtls_ret_val = mbedtls_ecp_group_copy(&ctx_verify.MBEDTLS_PRIVATE(grp), &ctx_sign.MBEDTLS_PRIVATE(grp));
if (MBEDTLS_EXIT_SUCCESS != mbedtls_ret_val) {

/* ... handle error ... */
printf("Error: mbedtls_ecp_group_copy - %d\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
mbedtls_ret_val = mbedtls_ecp_copy(&ctx_verify.MBEDTLS_PRIVATE(Q), &ctx_sign.MBEDTLS_PRIVATE(Q));
if (MBEDTLS_EXIT_SUCCESS != mbedtls_ret_val) {

/* ... handle error ... */
printf("Error: mbedtls_ecp_copy - %d\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/**************************
* Verify ECDSA signature *
**************************/
mbedtls_ret_val = mbedtls_ecdsa_read_signature(

&ctx_verify,
hash,
sizeof(hash),
signature,
signature_length);

if (MBEDTLS_EXIT_SUCCESS != mbedtls_ret_val) {
/* ... handle error ... */
printf("Error: mbedtls_ecdsa_read_signature - %d\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
ret_val = EXIT_SUCCESS;

exit:
mbedtls_ecdsa_free(&ctx_verify);
mbedtls_ecdsa_free(&ctx_sign);
return ret_val;

}
/* example showing encryption of 48 bytes of data,

includes a test which shows how the data can be decrypted
without passing the key */

int iid_bk_example_mbedtls_aes_encrypt(void)
{

int ret_val;
iid_return_t iid_ret_val;
int mbedtls_ret_val = MBEDTLS_EXIT_FAILURE;
mbedtls_aes_context enc;
unsigned char aes_key[16];
unsigned char original_data[48] = "reallylonggstringfortestingpurposes";
unsigned char encrypted_data[128];
/****************************
* Initialize and start BK *
****************************/
iid_ret_val = bk_init(sram_example, sizeof(sram_example));
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: bk_init - %u\n", iid_ret_val);

ret_val = EXIT_FAILURE;
goto exit;

}
iid_ret_val = bk_start(activation_code_example);
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: bk_start - %u\n", iid_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/* get deterministic key from BK */
iid_ret_val = bk_get_key(BK_SYM_KEY_TYPE_128, 0, (uint8_t *)aes_key);
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: aes key opening failing - %u\n", iid_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
mbedtls_ret_val = mbedtls_aes_setkey_enc(&enc, aes_key, 128);
if (MBEDTLS_EXIT_SUCCESS != mbedtls_ret_val) {

/* ... handle error ... */
printf("Error: setting AES key with deterministic key - %u\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
mbedtls_ret_val = mbedtls_aes_crypt_ecb(&enc, MBEDTLS_AES_ENCRYPT, original_data, encrypted_data);
if (MBEDTLS_EXIT_SUCCESS != mbedtls_ret_val) {

/* ... handle error ... */
printf("Error: AES encryption - %u\n", mbedtls_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
ret_val = EXIT_SUCCESS;

exit:
return ret_val;

}

3.3. iid_bk_examples_wolfssl.c
/*
* Copyright 2022 Intrinsic ID B.V. All rights reserved.

*
* Usage of this software is permitted under a valid written license agreement

* between you and Intrinsic ID B.V.

*/
/*

This example shows how BK can be used to generate a PUF-derived elliptic curve key pair.
This key pair is then used by WolfSSL to compute an ECDSA signature.
This code was written for WolfSSL v5.x.

*/
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "iid_bk.h"
#include <wolfssl/options.h>
#include "config.h"
#include <wolfssl/wolfcrypt/wc_port.h>
#include <wolfssl/wolfcrypt/logging.h>
#include <wolfssl/wolfcrypt/types.h>
#include <wolfssl/wolfcrypt/ecc.h>
#include <wolfssl/wolfcrypt/signature.h>
#include <wolfssl/wolfcrypt/integer.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/aes.h>
#include "iid_bk_examples_data.h"
/***
* H E L P E R F U N C T I O N S *
***/
/* bk_generate_random function can be used by WolfSSL to get random data.

To do so, WolfSSL MUST be built with -DWOLFSSL_USER_SETTINGS
and the wolfssl subdirectory of this example be added to its include path.

*/
#define USE_BK_RNG_FOR_WOLFSSL
#ifdef USE_BK_RNG_FOR_WOLFSSL
#ifndef WOLFSSL_USER_SETTINGS
#error "WolfSSL MUST be built with -DWOLFSSL_USER_SETTINGS"
#endif
#include "user_settings.h"

/* This function is called by WolfSSL inside its wc_RNG_GenerateBlock function. */
int iid_bk_rng_wolfssl_wrapper(unsigned char * output, unsigned int sz)
{

iid_return_t iid_ret_val;
int wolfssl_ret_val;
assert(sz <= UINT16_MAX);
iid_ret_val = bk_generate_random((uint16_t) sz, output);
if (IID_SUCCESS == iid_ret_val) {

wolfssl_ret_val = 0;
} else {

wolfssl_ret_val = RNG_FAILURE_E;
}
return wolfssl_ret_val;

}
/* This function is called by WolfSSL internally.

It is empty since the seeding of BK’s RNG is done when calling bk_init. */
int iid_custom_rand_generate_seed(unsigned char * output, unsigned int sz)
{

(void) output;
(void) sz;
return 0;

}
#endif /* USE_BK_RNG_FOR_WOLFSSL */
void zeroize_buffer(

volatile void * const dst,
size_t nbytes)

{
volatile char * p = dst;
while (nbytes-- > 0) {

*p++ = 0;
}

}
/* This function converts a WolfSSL curve ID to a BK curve ID */
bk_ecc_curve_t get_bk_curve_from_wolfssl_curve_id(ecc_curve_id curve_id)
{

bk_ecc_curve_t bk_curve;
switch (curve_id) {

#ifdef BK_ECC_CURVE_SECP192R1_PRIVATE_KEY_BYTES
case ECC_SECP192R1:

bk_curve = BK_ECC_CURVE_NIST_P192;
break;

#endif
#ifdef BK_ECC_CURVE_SECP224R1_PRIVATE_KEY_BYTES

case ECC_SECP224R1:
bk_curve = BK_ECC_CURVE_NIST_P224;
break;

#endif
#ifdef BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_BYTES

case ECC_SECP256R1:
bk_curve = BK_ECC_CURVE_NIST_P256;
break;

#endif
#ifdef BK_ECC_CURVE_SECP256K1_PRIVATE_KEY_BYTES

case ECC_SECP256K1:
bk_curve = BK_ECC_CURVE_NIST_K256;
break;

#endif
#ifdef BK_ECC_CURVE_SECP384R1_PRIVATE_KEY_BYTES

case ECC_SECP384R1:
bk_curve = BK_ECC_CURVE_NIST_P384;
break;

#endif
#ifdef BK_ECC_CURVE_SECP521R1_PRIVATE_KEY_BYTES

case ECC_SECP521R1:
bk_curve = BK_ECC_CURVE_NIST_P521;
break;

#endif
default:

bk_curve = -1;
break;

}
return bk_curve;

}
/* This function:

- uses BK to generate a PUF-derived (deterministic) private key
- stores this key in an Mbed TLS MPI
- computes the associated public key
- checks the validity of the key pair

*/
int iid_bk_get_puf_derived_wolfssl_key(

WC_RNG * rng,
int keysize,

ecc_key * key,
int curve_id,
const uint8_t * usage_context,
uint32_t usage_context_length)

{
int wolfssl_ret_val = MP_OKAY;
bk_ecc_curve_t bk_curve;
iid_return_t iid_ret_val;
PRE_ALIGN bk_ecc_private_key_t bk_private_key POST_ALIGN;
bk_curve = get_bk_curve_from_wolfssl_curve_id(curve_id);
iid_ret_val = bk_get_private_key(

bk_curve,
usage_context,
usage_context_length,
BK_KEY_SOURCE_PUF_DERIVED,
bk_private_key);

if (IID_SUCCESS != iid_ret_val) {
wolfssl_ret_val = ECC_PRIV_KEY_E;

}
if (MP_OKAY == wolfssl_ret_val) {

wolfssl_ret_val = wc_ecc_set_curve(key, keysize, curve_id);
}
if (MP_OKAY == wolfssl_ret_val) {

wolfssl_ret_val = mp_read_unsigned_bin(&(key->k), bk_private_key, keysize);
}
if (MP_OKAY == wolfssl_ret_val) {

wolfssl_ret_val = wc_ecc_make_pub_ex(key, NULL, rng);
}
if (MP_OKAY == wolfssl_ret_val) {

wolfssl_ret_val = wc_ecc_check_key(key);
}
zeroize_buffer(bk_private_key, sizeof(bk_private_key));
return wolfssl_ret_val;

}
/*

!!!!!!!!!

IMPORTANT:
Each of these example functions assumes BK is in Uninitialized state at the beginning of the example function

!!!!!!!!!

*/
/***
* E X A M P L E C O D E *
***/
/* This function is the ’main’ function of this example file.

It:
- initializes BK (using an SRAM image for the example)
- starts BK (using a pre-generated activation code for the example)
- generates a WolfSSL key pair (using BK)
- computes an ECDSA signature over a given message using the key pair
- verifies the generated ECDSA signature

*/
int iid_bk_example_wolfssl_ecdsa_signature(void)
{

int ret_val;
iid_return_t iid_ret_val;
int wolfssl_ret_val = 1;
uint8_t signature[ECC_MAX_SIG_SIZE] = { 0 };
word32 signature_size;
int signature_type = WC_SIGNATURE_TYPE_ECC;
ecc_key key;
WC_RNG rng;
/****************************
* Initialize and start BK *
****************************/
iid_ret_val = bk_init(sram_example, sizeof(sram_example));
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: bk_init - %u\n", iid_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
iid_ret_val = bk_start(activation_code_example);
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: bk_start - %u\n", iid_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/************************************

* Initialize WolfSSL RNG structure *
************************************/
wolfssl_ret_val = wc_InitRng(&rng);
if (0 != wolfssl_ret_val) {

/* ... handle error ... */
printf("Error: wc_InitRng - %d\n", wolfssl_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/***
* Generate a key pair for the signature *
***/
wolfssl_ret_val = wc_ecc_init(&key);
if (0 != wolfssl_ret_val) {

/* ... handle error ... */
printf("Error: wc_ecc_init - %d\n", wolfssl_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/* For the PUF-derived key in this example, an empty usage context is used */
wolfssl_ret_val = iid_bk_get_puf_derived_wolfssl_key(

&rng,
BK_ECC_CURVE_SECP256R1_PRIVATE_KEY_BYTES,
&key,
ECC_SECP256R1,
NULL,
0);

if (0 != wolfssl_ret_val) {
/* ... handle error ... */
printf("Error: iid_bk_get_puf_derived_wolfssl_key - %d\n", wolfssl_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/**
* Compute ECDSA signature over a SHA-256 hash of the message *
**/
wolfssl_ret_val = wc_SignatureGetSize(signature_type, &key, sizeof(key));
if (BAD_FUNC_ARG == wolfssl_ret_val) {

printf("Error: wc_SignatureGetSize - %d\n", wolfssl_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
signature_size = wolfssl_ret_val;
assert(signature_size <= sizeof(signature));
wolfssl_ret_val = wc_SignatureGenerate(

WC_HASH_TYPE_SHA256,
signature_type,
message_example,
sizeof(message_example),
signature,
&signature_size,
&key,
sizeof(key),
&rng);

if (0 != wolfssl_ret_val) {
/* ... handle error ... */
printf("Error: wc_SignatureGenerate - %d\n", wolfssl_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/**************************
* Verify ECDSA signature *
**************************/
wolfssl_ret_val = wc_SignatureVerify(

WC_HASH_TYPE_SHA256,
signature_type,
message_example,
sizeof(message_example),
signature,
signature_size,
&key,
sizeof(key));

if (0 != wolfssl_ret_val) {
/* ... handle error ... */
printf("Error: wc_SignatureVerify - %d\n", wolfssl_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
ret_val = EXIT_SUCCESS;

exit:
wc_ecc_free(&key);
wc_FreeRng(&rng);

return ret_val;
}
/* how to encrypt data with AES using the get_key function */
int iid_bk_example_wolfssl_aes_encrypt(void)
{

int ret_val;
iid_return_t iid_ret_val;
int wolfssl_ret_val = 1;
unsigned char aes_key[16];
unsigned char iv[16];
unsigned char original_data[48] = "reallylonggstringfortestingpurposes";
unsigned char encrypted_data[128];
Aes enc;
/****************************
* Initialize and start BK *
****************************/
iid_ret_val = bk_init(sram_example, sizeof(sram_example));
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: bk_init - %u\n", iid_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
iid_ret_val = bk_start(activation_code_example);
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: bk_start - %u\n", iid_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/* get deterministic key from BK */
iid_ret_val = bk_get_key(BK_SYM_KEY_TYPE_128, 0, (uint8_t *)aes_key);
if (IID_SUCCESS != iid_ret_val) {

/* ... handle error ... */
printf("Error: aes key opening failing - %u\n", iid_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
//iv is not set because it is not used for single block encryption (wc_AesEncryptDirect) used in this example
wolfssl_ret_val = wc_AesSetKey(&enc, aes_key, 16, iv, AES_ENCRYPTION);
if (wolfssl_ret_val != 0) {

/* ... handle error ... */
printf("Error: setting AES key with deterministic key - %u\n", wolfssl_ret_val);
ret_val = EXIT_FAILURE;
goto exit;

}
/* Does not have a return value */
wc_AesEncryptDirect(&enc, encrypted_data, original_data);
ret_val = EXIT_SUCCESS;

exit:
return ret_val;

}

	Table of Contents
	1 Introduction
	1.1 Document Scope
	1.2 Product Brief
	1.3 Function Groups

	2 Module Documentation
	2.1 BK API
	2.1.1 Detailed Description
	2.1.2 Data Structure Documentation
	2.1.3 Macro Definition Documentation
	2.1.4 Typedef Documentation
	2.1.5 Enumeration Type Documentation
	2.1.6 Function Documentation

	2.2 Return Codes
	2.2.1 Detailed Description
	2.2.2 Enumeration Type Documentation

	2.3 Compiler Attributes
	2.3.1 Detailed Description
	2.3.2 Macro Definition Documentation

	3 Example Documentation
	3.1 iid_bk_examples_standalone.c
	3.2 iid_bk_examples_mbedtls.c
	3.3 iid_bk_examples_wolfssl.c

