

Gowin MIPI DSI/CSI-2 Receiver IP 用户指南

IPUG1036-1.0,2023-09-28

版权所有 © 2023 广东高云半导体科技股份有限公司

GO₩IN高云、₩、Gowin、GowinSynthesis、云源以及高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止反言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2023/09/28	1.0	初始版本。

i

目录

目	录…		. i
图	目录		ii
表	目录	;i	ii
1	关于	本手册	1
	1.1	手册内容	1
	1.2	相关文档	1
	1.3	术语与缩略语	2
	1.4	技术支持与反馈	2
2	产品	概述	3
	2.1	产品概述	3
	2.2	主要特征	3
	2.3	资源占用	4
3	功能	描述	5
	3.1	顶层框图	5
	3.2	端口介绍	6
	3.3	时序说明	7
	3.4	配置参数	9
4	界面	配置1	0

图目录

图 3-1 Gowin MIPI DSI/CSI-2 Receiver IP 项层框图	5
图 3-2 输出时序图	7
图 3-3 O_PAYLOAD_DV 时序例图	8
图 3-4 两套包信息输出时序例图	8
图 4-1 IP Core Generator 工具	10
图 4-2 MIPI DSI/CSI-2 Receiver IP 配置界面	11
图 4-3 MIPI DSI/CSI-2 Receiver IP 例化	11

IPUG1036-1.0 ii

表目录

表 1-1 术语与缩略语	2
表 2-1 Gowin MIPI DSI/CSI-2 Receiver IP 概述	3
表 2-2 基于 GW2A-18 的 MIPI DSI/CSI-2 Receiver IP 资源占用	4
表 3-1 Gowin MIPI DSI/CSI-2 Receiver IP 端口列表	6
表 3-2 Gowin DSI/CSI-2 Receiver IP 参数	9

IPUG1036-1.0 iii

1 关于本手册 1.1 手册内容

1.1 手册内容

Gowin[®] MIPI DSI/CSI-2 Receiver IP 用户指南主要内容包括产品概述、功能描述、界面配置等,旨在用于帮助用户快速了解 Gowin MIPI DSI/CSI-2 Receiver IP 的产品特性、特点及使用方法

1.2 相关文档

- 1. 通过登录高云®半导体网站 <u>www.gowinsemi.com</u> 可以下载、查看以下相关文档:
 - IPUG948, Gowin MIPI D-PHY RX TX Advance IP 用户指南
 - <u>DS100, GW1N 系列 FPGA 产品数据手册</u>
 - DS102, GW2A 系列 FPGA 产品数据手册
 - DS226, GW2AR 系列 FPGA 产品数据手册
 - DS961, GW2ANR 系列 FPGA 产品数据手册
 - DS976, GW2AN-55 器件数据手册
 - SUG100, Gowin 云源软件用户指南
- MIPI Alliance Specification for D-PHY, Version 1.1 November 7, 2011, www.mipi.org
- 3. MIPI Alliance Specification for Display Serial Interface, Version 1.1 November 22, 2011, www.mipi.org
- 4. MIPI Alliance Specification for Camera Serial Interface 2 (CSI-2), Version 1.1, July 18, 2012, www.mipi.org

IPUG1036-1.0 1(11)

1 关于本手册 1.3 术语与缩略语

1.3 术语与缩略语

本手册中出现的相关术语、缩略语及相关释义如表 1-1 所示。

表 1-1 术语与缩略语

术语与缩略语	全称	含义
CSI	Camera Serial Interface	串行摄像头接口
DSI	Display Serial Interface	串行显示接口
ECC	Error Correction Code	纠错码
EoTP	End of Transmission Packet	传输结束包
IP	Intellectual Property	知识产权
LUT	Look-up Table	查找表
MIPI	Mobile Industry Processor Interface	移动行业处理器接口
NC	No Connect	不连接
WC	Word Count	负载字节数

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com.cn

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

IPUG1036-1.0 2(11)

2产品概述 2.1产品概述

2产品概述

2.1 产品概述

Gowin MIPI DSI/CSI-2 Receiver IP 用于从 Gowin MIPI D-PHY RX Advance IP 输出的、经过通道对齐处理后的 MIPI 字节数据流中解析分离出包头(Packet Header)信息和负载数据。包头信息包括: ECC,Data Type 和 Word Count 三部分。

表 2-1 Gowin MIPI DSI/CSI-2 Receiver IP 概述

Gowin MIPI DSI/CSI-2 Receiver IP		
逻辑资源	参见表2-2	
交付文件		
设计文件	Verilog(encrypted)	
参考设计	Verilog	
TestBench	Verilog	
测试设计流程		
综合软件	GowinSynthesis [®]	
应用软件	Gowin Software(V1.9.9.Beta-3及以上)	

注!

可登录高云半导体网站查看芯片支持信息。

2.2 主要特征

- 符合 MIPI DSI V1.1 和 MIPI CSI-2 V1.1 标准
- 支持 1、2、3 或 4 数据通道的 MIPI D-PHY RX 输入
- 支持 1:8 或 1:16 两种数据组织模式的 MIPI D-PHY RX 输入
- 支持 MIPI CSI-2 标准中定义的四种同步短包类型
- 支持 MIPI CSI-2 标准中定义的数据长包类型

IPUG1036-1.0 3(11)

2 产品概述 2.3 资源占用

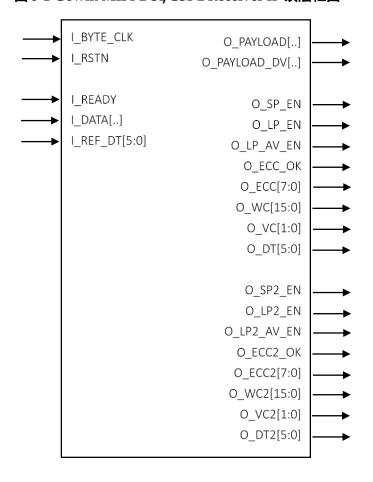
- 支持 MIPI DSI 标准中定义的四种同步短包类型
- 支持 MIPI DSI 标准中定义的数据长包类型
- 支持 MIPI DSI 标准中定义的 EoTP 短包类型
- 支持 MIPI DSI 标准中定义的三种视频模式
 - Non-burst mode with sync pulses
 - Non-burst mode with sync events
 - Burst mode

2.3 资源占用

以高云 GW2A-18 为例,Gowin MIPI DSI/CSI-2 Receiver IP 资源占用情况如表 2-2 所示。实际应用中,因使用的器件密度、速度等级的不同,实际的资源占用情况会有所不同。

表 2-2 基于 GW2A-18 的 MIPI DSI/CSI-2 Receiver IP 资源占用

参数配置	资源占用	
多 奴癿且	LUTs	REGs
1:8, 1-Lane	150	149
1:8, 2-Lane	199	175
1:8, 3-Lane	244	201
1:8, 4-Lane	278	227
1:16, 1-Lane	218	184
1:16, 2-Lane	310	244
1:16, 3-Lane	1052	630
1:16, 4-Lane	1328	722


IPUG1036-1.0 4(11)

3 功能描述 3.1 顶层框图

3功能描述

3.1 顶层框图

图 3-1 Gowin MIPI DSI/CSI-2 Receiver IP 顶层框图

Gowin MIPI DSI/CSI-2 Receiver IP 的基本功能是从 D-PHY 字节数据 流中解析分离出控制信号(包头,Packet Header)和负载数据。3-Lane 或 4-Lane 在 1:16 的数据组织模式下,一个时钟周期可能解析出两套控制信号,所以输出端口包含了第二套控制信号,其他情况,第二套控制信号不会引出。

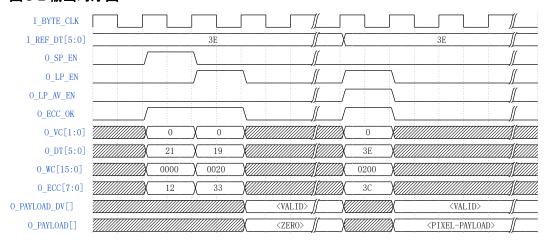
IPUG1036-1.0 5(11)

3.2 端口介绍

3.2 端口介绍

表 3-1 Gowin MIPI DSI/CSI-2 Receiver IP 端口列表

信号	方向	描述		
I_BYTE_CLK	Input	工作时钟		
I_RSTN	Input	异步复位信号,低电平有效		
I_READY	Input	Gowin MIPI D-PHY RX Advance IP输出的并行数据 对齐标识信号		
I_DATA0[]	Input	#n通道的并行数据	握. 0 < n < 3.	
I_DATA1[]	Input			时, 位宽为8:
I_DATA2[]	Input	当"MIPI D-PHY RX Mode"为1:8时,位宽为8; 1:16时,位宽为16;		
I_DATA3[]	Input	当 "Number of F	RX Lanes"为4时,	I_DATA0~
I_DATAS[]	input	I_DATA3端口都存在;为3时,只存在I_DATA0~ I_DATA2端口;为2时,只存在I_DATA0、I_DATA1 端口;为1时,只存在I_DATA0端口。		
I_REF_DT[5:0]	Input	参考数据类型		
O_PAYLOAD[]	Output	负载数据,位宽视D-PHY通道数和模式(1:8/1:16) 而定		
		通道数	1:8模式位宽	1: 16模式位宽
		1	8	16
		2	16	32
		3	24	48
		4	32	64
O_PAYLOAD_DV[]	Output	负载数据,字节有效标识,位宽为O_PAYLOAD[] 位宽除以8		
O_SP_EN	Output			
O_LP_EN	Output	长包标识,高电 ³	平有效	
O_LP_AV_EN	Output	数据类型匹配标识,高电平有效;指示当前数据类型与参考数据类型(I_REF_DT)一致		
O_VC[1:0]	Output	虚通道ID,对应包头(Packet Header)中的 Byte0[7:6]		
O_DT[5:0]	Output	数据类型,对应包头(Packet Header)中的 Byte0[5:0]		
O_WC[15:0]	Output	负载字节数,对应包头(Packet Header)中的 Byte1和Byte2		
O_ECC[7:0]	Output	纠错码,对应包头(Packet Header)中的Byte3		
O_ECC_OK	Output	ECC校验通过标识,高电平有效		


IPUG1036-1.0 6(11)

3 功能描述 3.3 时序说明

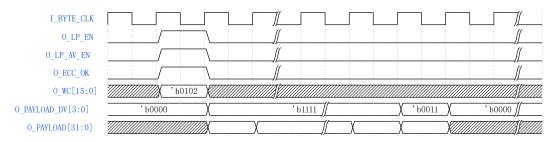
信号	方向	描述	
O_SP2_EN	Output	第二套短包标识,高电平有效	
O_LP2_EN	Output	第二套长包标识,高电平有效	
O_LP2_AV_EN	Output	第二套数据类型匹配标识,高电平有效	
O_VC2[1:0]	Output	第二套虚通道ID	
O_DT2[5:0]	Output	第二套数据类型	
O_WC2[15:0]	Output	第二套负载字节数	
O_ECC2[7:0]	Output	第二套纠错码	
O_ECC2_OK	Output	第二套ECC校验通过标识,高电平有效	

3.3 时序说明

图 3-2 输出时序图

当解析到有效的数据类型时,O_SP_EN 或 O_LP_EN 会被置起,同时输出包头的完整信息: 虚通道 ID(Virtual Channel ID)、数据类型(Data Type)、负载字节数(Word Count)和纠错码(ECC)。

仅当解析出的长包的数据类型与输入的参考数据类型


(I_REF_DT[5:0])一致时,O_LP_AV_EN 会被置起,目的是为了将指定的视频负载数据与其他长包数据,如空数据、消影数据等区分开。如果解析出了与参考数据类型不一致的视频负载数据类型,O_LP_AV_EN 同样不会被置起。

当使用解析出的包头信息的{O_WC, O_VC, O_DT}部分计算所得纠错码与解析出的 O_ECC 一致时,O_ECC_OK 会被置起。暂不支持对包头做纠错处理。

IPUG1036-1.0 7(11)

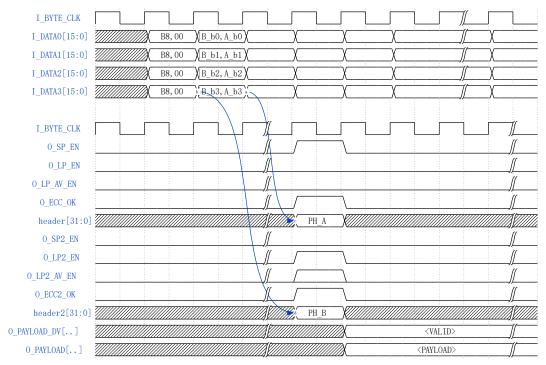

3 功能描述 **3.3** 时序说明

图 3-3 O_PAYLOAD_DV 时序例图

O_PAYLOAD_DV 输出负载数据字节有效标识,每一位对应 O_PAYLOAD 的每一字节。O_PAYLOAD 总是向前对齐。除了负载数据有效的最后一个周期外,O_PAYLOAD_DV 的所有位必须全为'1';最后一个周期,允许出现高位为连续'0',低位为连续'1',或全为'1'。如图 3-3 所示,负载字节数为'h0102,最后一周期将剩 2 字节,此时 O_PAYLOAD_DV为'b0011,标识 O_PAYLOAD 低位 2 字节为有效。

图 3-4 两套包信息输出时序例图

 $\label{eq:condition} \\ \text{header}[31:0] = \{0_\texttt{ECC}, \ 0_\texttt{WC}, \ 0_\texttt{VC}, \ 0_\texttt{DT}\}, \ \\ \text{header}[2]:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}, \ 0_\texttt{DT2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}\} \\ \text{header}[31:0] = \{0_\texttt{ECC2}, \ 0_\texttt{WC2}, \ 0_\texttt{VC2}, \ 0_\texttt{VC2}$

当配置成输入字节数据大于 4 字节(3-Lane/4-Lane@1:16)的 DSI 模式时,图 3-1 顶层框图中的 O_SP2_EN 等第二套包头信息信号,才会有效。如图 3-4 所示,在 4-Lane,1:16 的配置条件下,同时输出了两套包头信息 PH A 与 PH B。不会单独出现第二套包头信息有效的情况。

包头信息输出有效与输入的数据的间隔不是固定的,与通道数目及数据组织方式有关。

IPUG1036-1.0 8(11)

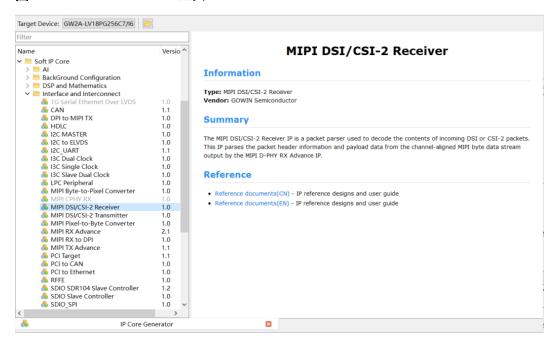
3 功能描述 3.4 配置参数

3.4 配置参数

表 3-2 Gowin DSI/CSI-2 Receiver IP 参数

参数名称	允许范围	描述
MIPI Interface Type	DSI/CSI-2	指定MIPI接口类型
MIPI D-PHY RX Mode	1:8或1:16	指定D-PHY RX的数据组织模式
Number of RX Lanes	1,2,3或4	指定D-PHY RX的通道数

IPUG1036-1.0 9(11)

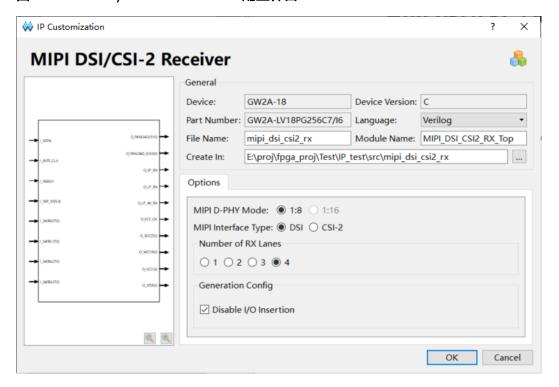

4 果面配置

用户可通过高云®半导体云源软件界面的"Tools"菜单启动 IP Core Generator 工具,完成调用并配置 MIPI DSI/CSI-2 Receiver IP。

1. 打开 IP Core Generator

用户建立工程后,单击"Tools"菜单栏,单击下拉列表中的"IP Core Generator"选项,即可打开 IP Core Generator 工具界面。点击"Soft IP Core > Interface and Interconnect > MIPI DSI/CSI-2 Receiver",在"Filter"栏中输入"DSI/CSI-2 Receiver",可快速定位。

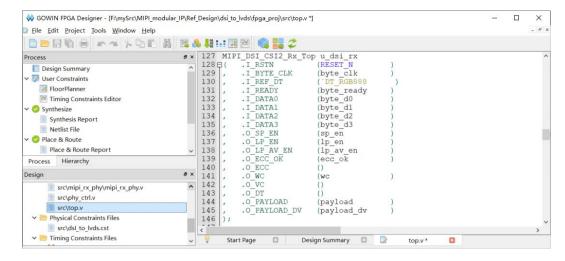
图 4-1 IP Core Generator 工具



IPUG1036-1.0 10(11)

2. MIPI DSI/CSI-2 Receiver IP 配置界面

用户在"IP Core Generator"工具界面双击"MIPI DSI/CSI-2 Receiver"项,即可打开 MIPI DSI/CSI-2 Receiver IP 配置界面。界面左侧是接口示意图,右侧是 IP 的配置参数选项(参见 <u>3.4 配置参数</u>),如图 4-2 所示。


图 4-2 MIPI DSI/CSI-2 Receiver IP 配置界面

3. 生成与例化

根据工程实际需求配置好各参数后,单击"OK"按钮,即可生成 MIPI DSI/CSI-2 Receiver IP。如图 4-3 所示,是在用户 Verilog 程序中 IP 例化的例子。

图 4-3 MIPI DSI/CSI-2 Receiver IP 例化

IPUG1036-1.0 11(11)

