

Gowin EasyCDR IP **用户指南**

IPUG1040-1.0,2023-10-12

版权所有 © 2023 广东高云半导体科技股份有限公司

GO · N高云、 · Gowin、GowinSynthesis、云源以及高云均为广东高云半导体科技股份 有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公 司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不 得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止反言或其它方式授予任 何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体 概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何 明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知 识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准 确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利, 恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2023/10/12	1.0	初始版本。

目录

目录	. i
图目录i	iii
表目录	iv
1 关于本手册	1
1.1 手册内容	. 1
1.2 相关文档	. 1
1.3 术语、缩略语和简写	. 1
1.4 技术支持与反馈	. 2
2 概述	3
21 介绍	3
2.1 开组	. О З
2.2 Nmm	3
2.5 工1 <u>次</u> 平 24 资源利田	4
	_
3 切能描述	5
3.1 整体结构	5
3.2 Clocking	5
3.2.1 Share logic	. 6
3.3 Resets	. 8
4 端口描述	9
4.1 信号定义	10
5 调用及配置1	1
5.1 IP 调用	11
5.2 IP 配置	12
6 参考设计1	3
6.1 硬件平台	13
6.2 工作原理	13
6.3 参数配置	14
6.4 操作步骤	14

i

图目录

图 3-1 Gowin EasyCDR IP 结构图	5
图 3-2 单个 IP 情况下时钟逻辑与 IP 之间的连接关系	7
图 3-3 多个 IP 情况下时钟逻辑与 IP 之间的连接关系	7
图 3-4 IP 两种复位方式的逻辑连接方式	8
图 4-1 EasyCDR IP 端口示意图	9
图 5-1 IP Core Generator 界面	11
图 5-2 EasyCDR 配置界面	12
图 6-1 参考设计系统结构	13

表目录

表 1-1 术语、缩略语	1
表 2-1 Gowin EasyCDR IP 概述	3
表 2-2 资源利用	4
表 3-1 GW5A(R)-25 系列产品内 HCLK 组对应的 GPIO 和 PLL	6
	40
衣 4-1 EasyCDR ज口信亏	10
表 4-1 EasyCDR ज口信号表 5-1 IP 配置项	10 12
表 4-1 EasyCDR ज口信亏表 5-1 IP 配置项表 7-1 文档列表	10 12 15

1 关于本手册

1.1 手册内容

Gowin[®] EasyCDR IP 用户指南主要内容包括功能描述、信号定义、界面配置、参考设计,旨在助用户快速了解 Gowin EasyCDR IP 的产品特性、特点及使用方法。本手册中的软件界面截图参考的是 1.9.9 Beta-5 版本,因软件版本升级,部分信息可能会略有差异,具体以用户软件版本的信息为准。

1.2 相关文档

登录高云[®]半导体网站 <u>www.gowinsemi.com.cn</u>可以下载、查看以下相 关文档:

- <u>SUG100</u>, Gowin 云源软件用户指南
- DS1103, GW5A 系列 FPGA 产品数据手册
- <u>DS1108, GW5AR 系列 FPGA 产品数据手册</u>

1.3 术语、缩略语和简写

表 1-1 中列出了本手册中出现的术语、缩略语及相关释义。

表 1-1 术语、缩略语

术语、缩略语	全称	释义
FPGA	Field Programmable Gate Array	现场可编辑门阵列
ALU	Arithmetic Logic Unit	算术逻辑单元
GPIO	Gowin Programmable Input/Output	Gowin可编程通用管脚
HCLK	High-speed Clock	高速时钟
IP	Intellectual Property	知识产权
LUT	Look-up Table	查找表
PLL	Phase-locked Loop	锁相环
PRBS	Pseudo-Random Binary Sequence	伪随机二进制序列
REG	Register	寄存器

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网站: <u>www.gowinsemi.com.cn</u>

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

2.1 介绍

Gowin EasyCDR IP 基于 GPIO 实现了将高速串行数据转换为低速并行数据的功能,用户可以使用该 IP 提取串行数据流且无需随路时钟。

表 2-1 Gowin EasyCDR IP 概述

Gowin EasyCDR IP	
逻辑资源	见表2-2
交付文件	
设计文件	Verilog (加密)
参考设计	Verilog
测试平台	Verilog
测试设计流程	
综合软件	GowinSynthesis
应用软件	Gowin Software (V1.9.9Beta-5及以上)

注!

可登录高云半导体网站查看芯片支持信息。

2.2 特征

- 将串行数据转化为并行数据
- 接收数据无需随路时钟
- 输出数据位宽 10/16bit
- 输入数据线速率不高于 1Gbps

2.3 工作频率

Gowin EasyCDR IP 工作频率为输入数据流的线速率的八分之一。

2.4 资源利用

Gowin EasyCDR IP 采用 Verilog HDL 实现,因使用器件的密度、速度和等级的不同,其性能和资源利用情况可能不一致。以高云 GW5A(R)-25 为例,默认配置下资源利用情况如表 2-2 所示。关于其它器件的资源利用请参阅相关的后期发布信息。

表 2-2 资源利用

器件	编程语言	LUTs	REGs
GW5A(R)-25	Verilog HDL	376	283

3.1 整体结构

Gowin EasyCDR IP 主要由 RX Mode、Data switch 和 Share logic 三 部分组成,如图 3-1 所示。

- RX Mode: 接收并处理串行数据流,无需随路时钟
- Data switch:将处理后的数据,解析并转换成并行数据
- Share logic: 时钟控制模块, 详见 3.2 Clocking 和 3.3 Resets

3.2 Clocking

器件内包含 HCLK 资源,作为高速时钟信号驱动 GPIO 资源。每4路 HCLK 为一组,且每个 HCLK 组可驱动固定的 GPIO 资源且被对应的 PLL 资源驱动,每组 HCLK 的频率大小都为输入信号线速率的一半,相位分别 为0°、90°、180°、270°。HCLK、PLL 和 GPIO 之间的对应关系请参 考 1.2 相关文档中 FPGA 产品数据手册。

以 GW5A(R)-25 系列 FPGA 产品为例,器件内包含 16 条 HCLK 资源,分 4 组 HCLK 组,每个 HCLK 组可驱动 2 个 BANK 的 GPIO,且每个

HCLK 组可被对应的 2 个 PLL 驱动,表 3-1 展示了 GW5A(R)-25 系列 FPGA 产品内每个 HCLK 组对应的 GPIO 和 PLL 情况。

表 3-1 GW5A(R)-25 系列产品内 HCLK 组对应的 GPIO 和 PLL

PLL	BANK
PLL_T/PLL_R[0]	BANK0/BANK1
PLL_R[1]/PLL_B	BANK2/BANK3
PLL_B/PLL_L[1]	BANK4/BANK5
PLL_L[0]/PLL_T	BANK6/BANK7

由于每个 HCLK 组都有对应的 GPIO 和 PLL,所以在例化 IP 时需要遵循以下几点要求:

- 例化单个 IP 时, IP 接收差分信号 (rxp_i/ rxn_i) 需分配到同个 HCLK 组的 GPIO 上。
- 例化多个 IP 时,所有 IP 的差分信号尽可能的分配到同个 HCLK 组的 GPIO 上,以便节省 HCLK 和 PLL 资源。
- 根据 IP 的差分信号所分配的 BANK,需要手动约束 PLL 到对应的位置上;例如 IP 的差分信号分配到 BANK0,约束 PLL 到 PLL_T,PLL 在工程顶层例化,例化名为 u_pll_hclk,约束语句为"INS_LOC "u_pll_hclk/PLLA_inst" PLL_T;",写入.cst 文件。

3.2.1 Share logic

IP 需要占用 4 路 HCLK 资源构建时钟网络,当同一个 HCLK 组内例化 多个 IP 时,所有 IP 需要共享此时钟网络。

Share logic 为 4 路 HCLK 构建的时钟网络,用户可根据自身设计需求 选择 IP 是否包含 Share logic。

IP 输出数据与时钟的关系如下:

- 当 Shared Logic 选择 Inside 时, IP 输出的并行数据同步于 IP 输出的 share_clk4_o
- 当 Shared Logic 选择 outside 时, IP 输出的并行数据同步于 IP 输入的 share_clk4_i

用户设计中 PLL 输出时钟频率需是输入数据线速率的一半,图示当线速 率为 0.5Gbps 时,PLL 输出时钟频率为 250MHz,用户可根据实际线速率大 小来设定。

单个 IP

当 HCLK 组中仅例化单个 IP 时, IP 应包含 Share logic,用于构建时钟网络,图 3-2 展示了单个 IP 情况下时钟逻辑与 IP 之间的连接关系。

多个 IP

当 HCLK 组中例化至少两个 IP 时,其中一个 IP 应包含 Share logic, 剩余 IP 应不包含 Share logic,以实现时钟网络的共享,图 3-3 展示了多个 IP 情况下时钟逻辑与 IP 之间的连接关系。

3.3 Resets

IP 支持两种复位方式,第一种复位方式用于复位 HCLK 组内所有的 IP,即通过复位 PLL 来控制 Share logic 进行 HCLK 组内所有 IP 的复位操 作;另一种复位方式用于独立复位单个 IP,即通过 rstn_i 实现单个 IP 的独 立复位操作,图 3-4 展示了 IP 两种复位方式的逻辑连接方式。

图 3-4 IP 两种复位方式的逻辑连接方式

IP 端口示意图如图 4-1 所示。

注!

- 部分表示当 Share logic 选择 Inside 时,端口存在
- 部分表示当 Share logic 选择 outside 时,端口存在

4.1 信号定义

表 4-1 EasyCDR 端口信号

序号	信号名称	类型	位宽	描述		
1	rxp_i	Input	1	接收差分信号,P端		
2	rxn_i	Input	1	接收差分信号,N端		
3	rstn_i	Input	1	复位信号,低电平有效		
4	pll_clkin_i	Input	1	PLL参考时钟		
5	pll_clkout0_i	Input	1	PLL的0通道时钟信号,相位为	句O°	
6	pll_clkout1_i	Input	1	PLL的1通道时钟信号,相位为	匀90 °	
7	pll_clkout2_i	Input	1	PLL的2通道时钟信号,相位为	匀180°	
8	pll_clkout3_i	Input	1	PLL的3通道时钟信号,相位为	匀270 °	
9	pll_lock_i	Input	1	PLL锁定信号,高电平有效		
10	share_clk0_o	Output	1	共享时钟1输出,相位0°		
11	share_clk1_o	Output	1	共享时钟2输出,相位90°		
12	share_clk2_o	Output	1	共享时钟3输出,相位180°		
13	share_clk3_o	Output	1	共享时钟4输出,相位270°		
14	share_clk4_o	Output	1	共享时钟5输出		
15	share_reset_o	Output	1	共享复位输出,高电平有效		
16	share_clk0_i	Input	1	共享时钟1输入,相位偏移0°		
17	share_clk1_i	Input	1	共享时钟2输入,相位偏移90	0	
18	share_clk2_i	Input	1	共享时钟3输入,相位偏移180	D°	
19	share_clk3_i	Input	1	共享时钟4输入,相位偏移270	D°	
20	share_clk4_i	Input	1	共享时钟5输入		
21	share_reset_i	Input	1	共享复位输入,高电平有效		
22	dout_o	Output	16/10	并行数据输出,高位在先	Shared Logic选择Inside	
23	dout_en_o	Output	1	并行数据有效标识,高电平	时,同步于	
				有效	snare_CIK4_0; Shared Logic洗择outside	
24	error_o	Output	1	│ 输出错误标识,高电平有效 │ 时,同步于share_clk4_i		

5.1 IP 调用

打开高云半导体云源[®]软件,点击快捷栏 " ³ " 或菜单栏 " Tools > IP Core Generator" 启动 IP Core Generator 工具,进行 IP 的调用及配置。

1. 打开 IP Core Generator

用户创建工程后,点击"IP Core Generator",即可打开 Gowin 的 IP 核产生工具,如图 5-1 所示。

图 5-1 IP Core Generator 界面

2. 打开 IP

双击 "Soft IP Core > Interface and Interconnect > EasyCDR",打开 EasyCDR IP 界面,如图 5-2 所示。

图 5-2 EasyCDR	配置界面
---------------	------

🐳 IP Customization					? ×
EasyCDR					
	General				
	Device:	GW5A-25		Device Version:	Α
	Part Number:	GW5A-LV2	5UG324ES	Language:	Verilog 🔻
	File Name:	easycdr		Module Name:	EasyCDR_Top
→ xp_i share_ck0_o	Create In:	roject\proj	ect2309\Gui_p	roject\EasyCDR_(GUI_pro\src\easycdr
→ ¤n_i share_ck1_o	Options				
stn_i share_ck2_0	RX Line Rate:		1.0000	Gbp	s
pll_clkin_i share_ck3_0	Data Width:		16	•	
pll_clkout0_i share_ck4_o	Share Logic:		Inside	•	
→ pll_clkout1_i share_reset_o	☑ Disable I/C) Insertion			
→ pll_clkout2_i dout_o[15:0] →					
→ pll_clkout3_i dout_en_o					
→ pll_lock_i enor_o →					
					OK Cancel

- 可通过修改"File Name",配置产生的 IP 文件名称。
- 可通过修改"Module Name",配置产生的 IP 顶层模块名称。
- 可通过修改"Options"选项,配置 IP 其他配置。

5.2 IP 配置

表 5-1 IP 配置项

选项	描述
RX Line Rate	接收信号的线速率,输入范围0.066~1Gbps
Date Width	输出并行数据的位宽,可选10或16
	共享时钟逻辑, 需根据实际情况进行选择
Share logic	● 选择Inside,则输出共享时钟,服务于其他例化的IP
	● 选择Outside,则接收共享时钟,不输出

h 参考设计

详细信息请参见高云半导体官网 EasyCDR IP 参考设计。

6.1 硬件平台

本节介绍在 GW5A(R)-LV25UG324&EV25UG324S_V1 实现 IP 的例 程,系统结构如图 6-1,系统由晶振及 PLL、PRBS top 和 IP 三部分组

成。

6.2 工作原理

该系统时钟由板载晶振经过 PLL 生成,工作原理如下:

- 1. PLL 输出 PRBS_top 及 IP 所需时钟
- 2. PRBS_top 生成伪随机序列,输出串行数据流
- 3. 数据流经差分通道,进入 IP
- 4. IP 接收串行数据并将其转换成 16 位的并行数据输出至 PRBS_top

IPUG1040-1.0

13(15)

- 5. PRBS_top 生成伪随机检测序列对 IP 输出的并行数据进行检测
- 6. 检测结果输出到板载插针 J118 的 1、2 管脚,亦可通过高云逻辑在线分 析仪< ≥ >观测输入输出信号的关系,信号 "flag_oser8_align" 与信号 "dout_flag_xor" 标出串并转换的时延逻辑。

6.3 参数配置

板载晶振输入时钟 50 MHz,用户可根据需求调用锁相环以获取所需频率的时钟(当前设计的硬件平台默认配置下支持串行线速率范围为 0.066~1Gbps)

6.4 操作步骤

- 1. 打开云源软件(Gowin_V1.9.9Beta-5 及以上) > 打开例程工程并设置顶 层文件 > 编译例程 > 将生成的比特流文件(后缀为.fs)下载到板卡中。
- 2. 用示波器探针连接板载插针 J118 中的 1、2 插针。
- 3. 通过示波器观察 1、2 插针的情况,若 1 插针信号恒为高电平且 2 插针 恒为低电平,则认为 IP 输出无误。
- **4.** 打开工具栏>Gowin Analyzer Oscilloscope(图标为<[∞]>)>运行,观测运行结果。

Gowin EasyCDR IP 交付文件主要包含文档和参考设计。

7.1 文档

文件夹主要包含用户指南 PDF 文档。

表 7-1	文档列表
-------	------

名称	描述
IPUG1040, Gowin EasyCDR IP用户指南	Gowin EasyCDR IP用户手册

7.2 参考设计

表 7-2 参考设计文件列表

文件名称	描述
top.v	IP例程顶层文件,提供接口信息,不加密
EasyCDR_Top.v	RTL设计文件,加密
prbs_top.vhd	伪随机序列文件,加密
EasyCDR_phy	物理约束文件,不加密(用户可自主配置)
IP_TEST_Timing.sdc	时序约束文件,不加密,(用户可自主配置)
IP_TEST.rao	gao文件,不加密,(用户可自主配置)

