

Gowin USB 3.0 PHY IP

User Guide

IPUG1187-1.2E, 05/23/2025

Copyright © 2025 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN is a trademark of Guangdong Gowin Semiconductor Corporation and is registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description	
05/17/2024	1.0E	Initial version published.	
01/17/2025	1.1E	ref_clk signal added.	
05/23/2025	1.2E	Arora V 15K devices supported.	

Contents

Contents	i
List of Figures	ii
List of Tables	iii
1 About This Guide	1
1.1 Purpose	1
1.2 Related Documents	1
1.3 Terminology and Abbreviations	1
1.4 Support and Feedback	2
2 Function Overview	3
2.1 Overview	3
2.2 Features	3
2.3 Resource Utilization	4
3 Functional Description	5
3.1 USB 3.0 PHY	5
3.2 USB Power Management	6
3.3 USB RX Status	6
3.3.1 RX Detection	6
3.3.2 Clock Tolerance Compensation	7
3.3.3 Error Detection	7
3.3.4 Loopback Mode	7
4 Signal Definition	8
5 Interface Configuration	12
6 Reference Design	17

List of Figures

Figure 3-1 USB 3.0 PHY Block Diagram	5
Figure 3-2 RX Detection Timing	6
Figure 4-1 Gowin Gowin USB 3.0 PHY IP Port Diagram	8
Figure 5-1 IP Core Generator	12
Figure 5-2 SerDes IP Core	13
Figure 5-3 SerDes Configuration Interface	14
Figure 5-4 PHY Configuration	14
Figure 5-5 USB 3.0 PHY Generation	16

List of Tables

Table 1-1 Terminology and Abbreviations	1
Table 2-1 Gowin USB 3.0 PHY IP Overview	3
Table 2-2 Resource Utilization	4
Table 3-1 Power State	6
Table 4-1 Signal Definition	8
Table 4-2 RxStatus Definition	10
Table 4-3 PowerDown Definition	11

1 About This Guide

1.1 Purpose

The purpose of Gowin USB 3.0 PHY IP User Guide is to help you learn the features and usage of Gowin USB 3.0 PHY IP by providing descriptions of functions, signals, and interface configuration, etc. The software screenshots and the supported products listed in this manual are based on Gowin Software 1.9.11. As the software is subject to change without notice, some information may not remain relevant and may need to be adjusted according to the software that is in use.

1.2 Related Documents

The latest user guides are available on the GOWINSEMI website. You can find the related documents at <u>www.gowinsemi.com</u>:

- DS981, GW5AT series of FPGA Products Data Sheet
- DS1104, GW5AST series of FPGA Products Data Sheet
- <u>SUG100, Gowin Software User Guide</u>

1.3 Terminology and Abbreviations

The terminology and abbreviations used in this manual are as shown in Table 1-1.

Table 1-1 Terminology and Abbreviations

Terminology and Abbreviations	Meaning
CDR	Clock and Data Recovery
IP	Intellectual Property
LFPS	Low Frequency Periodic Signaling

Terminology and Abbreviations	Meaning	
PIPE	Physical Interface for PCI Express	
USB	Universal Serial Bus	

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below.

Website: www.gowinsemi.com

E-mail: support@gowinsemi.com

2 Function Overview

2.1 Overview

Universal Serial Bus, commonly known as USB, is an external bus used to standardize the connection and communication between computers and external devices. Gowin USB 3.0 PHY IP is a USB 3.0 physical layer transceiver that can support data receive and transmit at high speed (5Gbps).

|--|

Gowin USB 3.0 PHY IP					
Logic Resource	Please refer to Table 2-1				
Delivered Doc.					
Design Files	Verilog (encrypted)				
Reference Design	Verilog				
TestBench	Verilog				
Test and Design Flow					
Synthesis Software	GowinSynthesis				
Application Software	Gowin Software (V1.9.9.01 and above)				

Note!

For the devices supported, you can click <u>here</u> to get the information.

2.2 Features

The features of Gowin USB 3.0 PHY IP are as follows:

- Supports 5Gbps mode
- Supports data serial and parallel conversion
- Supports 8B/10B encoding and decoding

- Supports receiver detection
- Supports LFPS detection and transmission
- Supports PIPE 3.0 interface

2.3 Resource Utilization

Gowin USB 3.0 PHY IP can be implemented by Verilog. Its performance and resource utilization may vary when the design is employed in different devices, or at different densities, speeds, or grades. Taking Gowin GW5AST-138 and GW5AT-60/15 devices as an instance, the resource utilization of Gowin USB 3.0 PHY IP is as shown in Table 2-2.

Table 2-2 Resource Utilization

Device	Speed Grade	Name	Resource Utilization
GW5AST-138		LUT	1337
	50	REG	684
	E3	ALU	7
		BSRAM	0
GW5AT-60		LUT	2139
	C1/I0	REG	1002
		ALU	20
		BSRAM	1
GW5AT-15		LUT	2155
	02/14	REG	993
	02/11	ALU	20
		BSRAM	1

3 Functional Description

3.1 USB 3.0 PHY

USB 3.0 PHY locates between the Link Layer and the counterpart PHY, facilitating TX/RX data at the Physical layer. The USB 3.0 PHY block diagram is as shown below.

Figure 3-1 USB 3.0 PHY Block Diagram

3.2 USB Power Management

The USB 3.0 specification defines 4 power states, U0, U1, U2, and U3, and the PIPE specification defines P0, P1, P2, and P3. The PowerDown pin states are mapped to LTSSM states as described in Table 3-1. For all power state transitions, the link layer controller must not begin any operational sequences or further power state transitions until the PhyStatus has indicated that the internal state transition is completed.

PIPE Power State	USB Power State	PCLK	PLL	ТХ	RX	PhyStatus
P0	U0, other states	On	On	On	On	Single cycle pulse
P1	U1	On	On	Idle, LFPS	Idle	Single cycle pulse
P2	U2, RxDetect, SS.inactive	On	On	ldle, LFPS, RxDetect	ldle	Single cycle pulse
P3	U3, SS.disable	None	None	LFPS, RxDetect	Idle	Pulled down

Table 3-1 Power State

3.3 USB RX Status

3.3.1 RX Detection

When the PHY operates in P2 or P3 state, users can pull up the TxDetectRx_loopback signal. When the PHY detection is complete, the PhyStatus signal will be asserted for one clock cycle. If USB 3.0 is detected on the counterpart, RxStatus is encoded as 3'b011. If USB 3.0 is not detected on the counterpart, RxStatus is 3'b000.

Figure 3-2 RX Detection Timing

3.3.2 Clock Tolerance Compensation

The receiver contains an elastic buffer used to compensate for differences in frequencies between bit rates at the two ends of a link. The elastic buffer must be capable of holding enough symbols to handle worst case differences in frequency and worst case intervals between SKP ordered sets. When an SKP ordered set from the data stream is added, RxStatus is encoded as 3'b001, and it is asserted for one clock cycle. When an SKP ordered set is removed from the data stream, RxStatus is encoded as 3'b010, and it is asserted for one clock cycle.

3.3.3 Error Detection

The PHY can detect several types of receive errors. These errors are indicated by the RxStatus signal. When a receive error occurs, the error code closest to the error actually occurred in the data stream is asserted for one clock cycle. There are four errors on the RxStatus signal.

- 8B/10B decode error
- Elastic buffer overflow
- Elastic buffer read empty
- Disparity error

If an error occurs during an SKP ordered set, causing the error signal on RxStatus to coincide with the SKP add/remove signal on the same CLK, the error signal takes priority.

3.3.4 Loopback Mode

When TxDetectRx_loopback is pulled up and TxElecidle is pulled down, the PHY enters loopback mode. In loopback mode, data transmission from the PIPE TX interface to the SerDes TX channel stops, and data transmission from the Serdes TX to SerDes RX channel begins. During loopback, the received data is still transmitted to the PIPE RX interface. Loopback operation is terminated when TxDetectRx_loopback is pulled down.

4 Signal Definition

The IP port diagram of Gowin USB 3.0 PHY IP is shown in Figure 4-1. Figure 4-1 Gowin Gowin USB 3.0 PHY IP Port Diagram

The signal definitions of Gowin USB 3.0 PHY IP signals are shown in Table 4-1.

Table 4-1 S	ignal Definition
-------------	------------------

No.	Signal Name	I/O	Data Width	Description
1	phy_resetn	Input	1	PHY reset signal, active-low
2	ref_clk	Input	1	The RX reference clock with frequency of 125 MHz
2	pclk	Output	1	Parallel interface data clock, 125MHz
3	PipeTxData	Input	32	Parallel USB input bus 32 bits represent 4 symbols of transmit data. PipeTxData [7:0] is the first symbol to be transmitted, and PipeTxData [15:8] is the

No.	Signal Name	I/O	Data Width	Description
				second symbol. PipeTxData [23:16] is the third symbol to be transmitted, and PipeTxData [31:24] is the fourth symbol.
4	PipeTxDataK	Input	4	Data/Control for the symbols of transmit data PipeTxDataK[0] corresponds to PipeTxData [7:0]; PipeTxDataK[1] corresponds to PipeTxData [15:8]; PipeTxDataK[2] corresponds to PipeTxData [23:16]; PipeTxDataK[3] corresponds to PipeTxData [31:24].
5	PipeRxData	Input	32	Parallel USB output bus 32 bits represent 4 symbols of transmit data. PipeRxData [7:0] is the first symbol to be transmitted, and PipeRxData [15:8] is the second symbol. PipeRxData [23:16] is the third symbol to be transmitted, and PipeRxData [31:24] is the fourth symbol.
6	PipeRxDataK	Output	4	Data/Control bit for the symbols of receive data; PipeRxDataK[0] corresponds to PipeRxData [7:0]; PipeRxDataK[1] corresponds to PipeRxData [15:8]; PipeRxDataK[2] corresponds to PipeRxData [23:16]; PipeRxDataK[3] corresponds to PipeRxData [31:24].
7	PipeRxDataValid	Output	1	RX data valid, active-high
8	TxDetectRx_loopbac k	Input	1	Used to indicate the PHY to begin a receiver detection operation or to begin loopback or to signal LFPS during P0 for USB Polling state.
9	TxElecIdle	Input	1	Force TX output to electrical idle according to power state, active-high
10	RxPolarity	Input	1	Tell PHY to do a polarity inversion on the received data 0: PHY does no polarity inversion 1: PHY does polarity inversion.
11	RxEqTraining	Input	1	Used to instruct the receiver to bypass normal operation to perform equalization training. While performing training, the state of the RxData interface is undefined.

No.	Signal Name	I/O	Data Width	Description
12	RxTermination	Input	1	Used to control receiver termination, active-high
13	RxElecidle	Output	1	Receiver detection of an electrical idle, indicating that LFPS is detected.
14	RxStatus	Output	3	Encodes the receiver state and error code of the received data stream, see details in Table 4-2.
15	TxOnesZeros	Input	1	Tells PHY to transmit an alternating sequence of 50-250 ones and 50-250 zeros
16	PowerDown	Input	2	PHY power state, see details in Table 4-3.
17	PhyStatus	Output	1	Used to indicate completion of several PHY functions including stable PCLK after Reset, power management state transitions, rate change, and receiver detection.
18	PowerPresent	Output	1	Used to indicate the presence of VBUS

Table 4-2 RxStatus Definition

RxStatus [2]	RxStatus [1]	RxStatus [0]	Description
0	0	0	Received data normal
0	0	1	1 SKP ordered set added
0	1	0	1 SKP ordered set removed
0	1	1	Receiver detected
1	0	0	8B/10B decode error
1	0	1	Elastic buffer overflow
1	1	0	Elastic Buffer underflow
1	1	1	Receive disparity error

PowerDown [1]	PowerDown [0]	Description
0	0	P0, normal operation
0	1	P1, low recovery time latency, power saving state
1	0	P2, longer recovery time latency, lower power state
1	1	P3, lowest power state

Table 4-3 PowerDown Definition

5 Interface Configuration

You can select Tools in Gowin Software to start the IP Core Generator to call and configure USB 3.0 PHY.

1. Open IP Core Generator.

After creating the project, you can click the "Tools" tab in the upper-left corner, then click the "IP Core Generator" via the drop-down list, as shown in Figure 5-1.

Figure 5-1 IP Core Generator

Start Page S	et 🖬 🖄 🧠 🏭 🌫 Ø × Target Device: GWSAST-LV138FPG676AES 📴		
Vergeranneer Vergeranneer Vergeranneer Vergeranneer Vergeranneer Vergeranneer Vergeranneer Vergeranneer Vergeranneer	Direr Versity None Versity V Modele > Modele	SerDes Information RyserBes Wenders Conflict Senticonal SerDes. It includes various high speed protocol, such as SCMLI, CPRL, SEDDO4B, etc. It also provides a Customized PHY configuration to configure Gowin SerDes flexibly.	
Design Process Hierarchy	💡 St.	rt Page 🔲 🔥 IP Core Generator	

2. Open SerDes IP

Select "SerDes" in IP Core Generator and open SerDes IP configuration interface, as shown in Figure 5-2.

Figure 5-2 SerDes IP Core

3. SerDes IP Core Configuration Interface

First configure "General" tab in the SerDes IP interface.

- Device, Device Version, Part Number: Part number settings, determined by the current project, and the user can not set it.
- Language: Support Verilog and VHDL; choose the language as requirements, and the default is Verilog.
- File Name, Module Name, Create In: Display SerDes file name, module name and the generated file path settings.

You can select the protocol in "Protocol" option according to your needs. Click "Create" button on the right to open the protocol configuration, and it displays the current protocols supported by SerDes IP and the corresponding Quad, PLL and Lane usage; on the right side, it displays the information about the selected protocol, including "Information", "Summary" and "Reference".

	9		La				FPG676AES	GW5AST-LV138	rt Number:
	Тор	N					serdes	Name:	
		D:\MXY\project_202401\usb3_0_phy_ip_test\src\serdes							
	USB 3.0 PHY			eate	▼ Cre	<u>.</u>		USB 3.0 PHY	otocol 属
	Information								
	Type: USB 3.0 PHY Vendor: GOWIN Semiconductor				Quad1				Quad0
	Summary				quut				quuu
SB 3.0 t PIPE	The USB 3.0 PHY IP core supports 5.0-Gbps USB 3. physical layer transceiver. It support the 32-bit PIP operates with a 125-MHz interface clock.		QPLL	QPLLO			QPLL1	QPLLO	
	Reference								[
esigns ar	Reference documents(CN) - IP reference design user guide	CPLL			CPLL	CPLL	CPLL	CPLL	CPLL
esigns an	Reference documents(EN) - IP reference design user guide	Lane3	Lane2	Lane1	Lane0	Lane3	Lane2	Lane1	Lane0
Je itt d	Vendor: GOWIN Semiconductor Summary The USB 3.0 PHY IP core supports 5.0-Gbps U physical layer transceiver. It support the 32-b operates with a 125-MHz interface clock. Reference Reference documents(CN) - IP reference of user guide	Qued1 QPLL0 QPLL1 CPLL CPLL CPLL CPLL CPLL CPLL			QPLL0 QPLL1			Quad0	

Figure 5-3 SerDes Configuration Interface

4. Open USB 3.0 PHY IP configuration interface

Select "USB 3.0 PHY" in the "Protocol" option, and click "Create" button to open the USB 3.0 PHY IP configuration interface, as shown in Figure 5-4.

Figure 5-4 PHY Configuration

🗱 IP Customization						? ×
USB 3.0 PHY						
	General					
	Device:	GW5AST-138	De	evice Version:	В	
	Part Number:	GW5AST-LV138F	PG676AES La	inguage:	Verilog	~
	File Name:	usb3_0_phy	м	odule Name:	USB3_0_PHY_Top	
	Create In:	D:\MXY\project_	202401\usb3_0_p	hy_ip_test\src\	serdes\usb3_0_phy	
PipeTxData(31:0)	PHY Configura	ation				
PipeRcData(310)	Channel Sale	oction O0 Lanco		×		
TxDetectRx_loopback PipeRxDataK(30)	Loophack N	Ander OFF		× v		
TxElecidle PipeRxDataValid	Line Rate:	5		Ghos		
RxPabrity RxEed de	Refclk Sele	ection		0003		
RxTermination 8x6tatus(20)	Reference	Clock Source:	Q0 REFCLK0	\sim		
TxOnesZeros PhyStatus	Reference	Clock Frequency:	100.000	MHz		
PawerDawn(10)	PLL Selecti	on:	QPLL0	\sim		
EastcityBufferMode					Ca	lculate
Q. 8	L					
					ОК	Cancel

The left side of the configuration interface displays the port diagram of USB 3.0 PHY IP, and on the right side, it shows parameter configuration options, which includes the PHY Configuration option.

- Channel Selection option: Select the required lane from the drop-down list, including eight lanes, Q0 Lane0, Q0 Lane1, Q0 Lane2, Q0 Lane3, Q1 Lane0, Q1 Lane1, Q1 Lane2 and Q1 Lane3; if the lane is already in use, it will not be displayed.
- Loopback Mode option: Includes four modes, OFF, LB_NES, LB_FES and LB_ENC.
- Line Rate option: The default rate is 5 Gbps, which cannot be configured.
- Reference Clock Source option: Reference clock source, and you can select REFCLK0 and REFCLK1 of Quad0 or REFCLK0 and REFCLK1 of Quad1.
- Reference Clock Frequency option: Reference clock frequency, if the reference clock source is used, the frequency displayed here is the one of the selected reference clock source.
- PLL Selection: PLL source; you can select QPLL0, QPLL1, or CPLL.

There is a limitation between the line rate and the reference clock; make sure that the reference clock can generate the above line rate, which can also be detected through clicking "Calculate" button.

5. IP Generation

After completing USB 3.0 PHY IP configuration, click "OK" button at the bottom right corner of the interface to generate files of the USB 3.0 PHY IP, and return to the SerDes IP configuration interface, and then the SerDes IP configuration interface displays the current generated IP and the corresponding Quad, PLL, and Lane usage, as shown in Figure 5-5.

Then, click "OK" button at the bottom right corner of the interface to generate SerDes IP files and complete the whole USB 3.0 PHY IP generation.

Figure 5-5 USB 3.0 PHY Generation

6 Reference Design

See Gowin USB3.0 PHY RefDesign at Gowinsemi website.

