

## Gowin MII to RMII IP 用户指南

IPUG1195-1.0, 2024-12-31

#### 版权所有 © 2024 广东高云半导体科技股份有限公司

GOŴIN高云、GOŴIN、畿、GOWINSEMI、GOWIN、Gowin、高云、晨熙、小蜜蜂、Little Bee、 Arord - V、GowinPnR、GoBridge 均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

#### 免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止反言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

#### 版本信息

| 日期         | 版本  | 说明    |
|------------|-----|-------|
| 2024/12/31 | 1.0 | 初始版本。 |

## 目录

| 图              | 目录             | iii |
|----------------|----------------|-----|
| 表              | 目录             | iv  |
| 1 <del>j</del> | 关于本手册          | 1   |
|                | 1.1 手册内容       |     |
|                | 1.2 相关文档       | 1   |
|                | 1.3 术语、缩略语和简写  | 2   |
|                | 1.4 技术支持与反馈    | 2   |
| <b>2</b> ‡     | 慨述             | 3   |
|                | 2.1 介绍         | 3   |
|                | 2.2 特征         | 3   |
|                | 2.3 资源利用       | 4   |
| <b>3</b> J     | 功能描述           | 5   |
|                | 3.1 整体结构       | 5   |
|                | 3.2 Clocking   |     |
|                | 3.3 Speed      | 6   |
|                | 3.4 MII        | 6   |
|                | 3.4.1 数据接收     | 7   |
|                | 3.4.2 数据发送     | 8   |
|                | 3.5 RMII       | 8   |
|                | 3.5.1 数据接收     |     |
|                | 3.5.2 数据发送     |     |
|                | 3.6 关联 IP      |     |
|                | 端口描述           |     |
| 5 ì            | 调用及配置          | 13  |
| 6 💈            | 参考设计           | 16  |
|                | 6.1 系统结构       | 17  |
|                | 6.2 操作步骤       | 17  |
|                | 6.2.1 Modelsim | 17  |
|                | 6.2.2 VCS      | 18  |

| 7 7 | 文件交付          | 19   |
|-----|---------------|------|
|     | 7.1 文档        | . 19 |
|     | 7.2 设计源代码(加密) | . 19 |
|     | 7.3 余老设计      | 10   |

## 图目录

| 图 3-1 Gowin MII to RMII IP 结构图                    | 5  |
|---------------------------------------------------|----|
| 图 3-2 时钟结构图                                       |    |
| 图 3-3 MII 下正常数据接收过程                               | 7  |
| 图 3-4 MII 下错误数据接收过程                               | 7  |
| 图 3-5 MII 下正常数据发送过程                               | 8  |
| 图 3-6 RMII 在 100M 速率下正常数据接收过程                     | 9  |
| 图 3-7 RMII 在 10M 速率下正常数据接收过程                      | 9  |
| 图 3-8 RMII 在 100M 速率下错误数据接收过程                     | 9  |
| 图 3-9 RMII 在 10M 速率下错误数据接收过程                      | 9  |
| 图 3-10 RMII 在 100M 速率下正常数据发送过程                    | 9  |
| 图 3-11 RMII 在 10M 速率下正常数据发送过程                     | 9  |
| 图 3-12 与 Gowin Triple Speed Ethernet MAC IP 连接示意图 | 10 |
| 图 4-1 Gowin MII to RMII IP 端口示意图                  |    |
| 图 5-1 IP Core Generator 界面                        | 14 |
| 图 5-2 Gowin MII to RMII 配置界面                      | 15 |
| 图 6-1 系统结构                                        | 17 |
| 图 6-2 Modelsim 操作流程图                              | 18 |

## 表目录

| 表 1-1 术语、缩略语                       | 2  |
|------------------------------------|----|
| 表 2-1 Gowin MII to RMII IP 概述      |    |
| 表 2-2 资源利用                         |    |
| 表 3-1 MII 下字节数据传输顺序                | 7  |
| 表 3-2 RMII 下字节数据传输顺序               | 8  |
| 表 4-1 Gowin MII to RMII 端口信号列表     | 11 |
| 表 7-1 文档列表                         | 19 |
| 表 7-2 Gowin MII to RMII IP 设计源代码列表 | 19 |
| 表 7-3 参考设计文件列表                     | 19 |

1 关于本手册 1.1 手册内容

# **1** 关于本手册

#### 1.1 手册内容

Gowin MII to RMII IP 用户指南主要内容包括功能描述、信号定义、界面配置、参考设计等,旨在助用户快速了解 Gowin MII to RMII IP 的产品特性、特点及使用方法。本手册中的软件界面截图参考的是 1.9.11 版本,因软件版本升级,部分信息可能会略有差异,具体以用户软件版本的信息为准。

#### 1.2 相关文档

登录高云半导体网站 www.gowinsemi.com.cn 可以下载、查看以下相关文档:

- SUG100, Gowin 云源软件用户指南
- DS100, GW1N 系列 FPGA 产品数据手册
- DS117, GW1NR 系列 FPGA 产品数据手册
- DS821, GW1NS 系列 FPGA 产品数据手册
- DS861, GW1NSR 系列 FPGA 产品数据手册
- DS841, GW1NZ 系列 FPGA 产品数据手册
- DS961, GW2ANR 系列 FPGA 产品数据手册
- DS102, GW2A 系列 FPGA 产品数据手册
- DS226, GW2AR 系列 FPGA 产品数据手册
- DS971, GW2AN-18X &9X 器件数据手册
- DS976, GW2AN-55 器件数据手册
- DS981, GW5AT 系列 FPGA 产品数据手册
- DS1103, GW5A 系列 FPGA 产品数据手册
- DS1104, GW5AST 系列 FPGA 产品数据手册
- DS1105,GW5AS 系列 FPGA 产品数据手册
- DS1108, GW5AR 系列 FPGA 产品数据手册

IPUG1195-1.0 1(20)

1.3 术语、缩略语和简写

#### ● DS1118, GW5ART 系列 FPGA 产品数据手册

#### 1.3 术语、缩略语和简写

表 1-1 中列出了本手册中出现的术语、缩略语及相关释义。

表 1-1 术语、缩略语

| 术语、缩略语 | 全称                                  | 释义       |
|--------|-------------------------------------|----------|
| FPGA   | Field Programmable Gate Array       | 现场可编辑门阵列 |
| IP     | Intellectual Property               | 知识产权     |
| LUT    | Look-up Table                       | 查找表      |
| MII    | Media Independent Interface         | 媒体独立接口   |
| REG    | Register                            | 寄存器      |
| RMII   | Reduced Media Independent Interface | 简化媒体独立接口 |

#### 1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com.cn E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

IPUG1195-1.0 2(20)

2 概述 2.1 介绍

2 概述

#### 2.1 介绍

Gowin MII to RMII IP 实现 MII 接口和 RMII 接口之间的相互转换,提供 16 根信号的 MII 接口和 7 根信号的 RMII 接口,同时支持 10M 和 100M 两种速率。

表 2-1 Gowin MII to RMII IP 概述

| Gowin MII to RMII IP |                             |  |  |
|----------------------|-----------------------------|--|--|
| 逻辑资源 见表 2-2          |                             |  |  |
| 交付文件                 |                             |  |  |
| 设计文件 Verilog (加密)    |                             |  |  |
| 参考设计                 | Verilog                     |  |  |
| 测试平台 Verilog         |                             |  |  |
| 测试设计流程               |                             |  |  |
| 综合软件 GowinSynthesis  |                             |  |  |
| 应用软件                 | Gowin Software(V1.9.11 及以上) |  |  |

#### 注!

可登录高云半导体网站查看芯片支持信息。

#### 2.2 特征

- 支持 MII 和 RMII 两种接口
- 实现 MII 和 RMII 之间的时序转换
- 支持 10M 和 100M 两种速率

IPUG1195-1.0 3(20)

2.3 资源利用

#### 2.3 资源利用

Gowin MII to RMII IP 采用 Verilog 实现,因使用器件的密度、速度和等级的不同,其性能和资源利用情况可能不一致。以高云 GW5AST-138 为例,默认配置下资源利用情况如表 2-2 所示。关于其它器件的资源利用请参阅相关的后期发布信息。

表 2-2 资源利用

| 器件         | 编程语言    | LUTs | REGs |
|------------|---------|------|------|
| GW5AST-138 | Verilog | 36   | 37   |

IPUG1195-1.0 4(20)

3 功能描述 3.1 整体结构

## **3** 功能描述

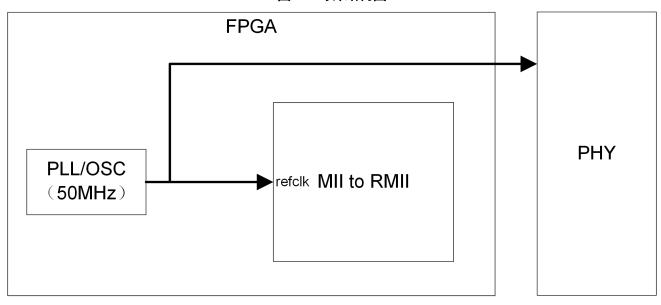
#### 3.1 整体结构

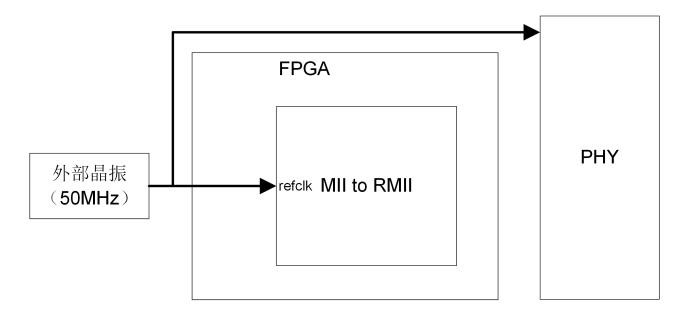
Gowin MII to RMII IP 主要由 Clock gen 和 Format conversion 两部分组成,如图 3-1 所示。



图 3-1 Gowin MII to RMII IP 结构图

- Clock gen: 生成 MII 需要的时钟信号
- Format conversion: 实现 MII 和 RMII 之间的时序转换


#### 3.2 Clocking


Gowin MII to RMII IP 在输入的 50MHz 时钟下完成 MII 和 RMII 之间的数据转换,其中 50MHz 时钟可以是 FPGA 内部生成,也可以使用外部晶振。值得注意的是,必须给 Gowin MII to RMII IP 和外部的 PHY 提供 50MHz 同源时钟,如图 3-2 所示。

IPUG1195-1.0 5(20)

3 功能描述 3.3 Speed

图 3-2 时钟结构图





#### 3.3 Speed

Gowin MII to RMII IP 支持 10M 和 100M 两种速率,可通过 speedis\_100 进行选择;当 speedis\_100 设置为 1 时,IP 是运行在 100M 速率下,当 speedis\_100 设置为 0 时,IP 运行在 10M 速率下。

#### 3.4 MII

MII 的数据传输过程是在 mii\_rx\_clk 和 mii\_tx\_clk 两个时钟下进行的,所有的接收信号同步于 mii\_rx\_clk,所有的发送信号同步于 mii\_tx\_clk。

IPUG1195-1.0 6(20)

3 功能描述 3.4 MII

mii\_rx\_clk 和 mii\_tx\_clk 都是通过 50 MHz 的 refclk 分频而来,在 100M 速率下,mii\_rx\_clk 和 mii\_tx\_clk 的频率是 25MHz;在 10M 速率下,mii\_rx\_clk 和 mii\_tx\_clk 的频率是 2.5 MHz。

一个时钟周期内传输 4bit 数据, 当需要传输一字节数据时, 数据传输顺序如表 3-1 所示。

| 表 3-1 MII | 下字节数据传输顺序 |
|-----------|-----------|
|-----------|-----------|

| 传输顺序          | 字节数据  |
|---------------|-------|
| 第 1 个 4bit 数据 | [3:0] |
| 第 2 个 4bit 数据 | [7:4] |

#### 3.4.1 数据接收

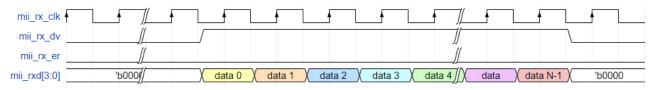
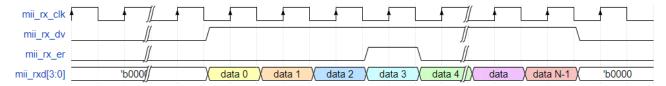

#### 正常数据接收

图 3-3 展示 MII 下正常数据接收过程。

在整个数据接收的过程中,mii\_rx\_dv 一直保持为 1,直到接收过程结束才会变成 0,同时 mii\_rx\_er 也一直保持为 0,mii\_rxd 为接收的数据。mii\_rx\_dv、mii\_rx\_er 和 mii\_rxd 是在 mii rx clk 的下降沿完成状态转换,可以提供良好的建立时间和保持时间。

需要注意 IP 中没有 buffer 用来缓存接收的数据,因此用户必须时刻准备接收连续的数据。

图 3-3 MII 下正常数据接收过程




#### 错误数据接收

图 3-4 展示 MII 下错误数据接收过程。

当 mii rx dv 为 1 时,若 mii rx er 也为 1,则此时 mii rxd 接收的数据为错误数据。

图 3-4 MII 下错误数据接收过程



IPUG1195-1.0 7(20)

3 功能描述 3.5 RMII

#### 3.4.2 数据发送

#### 正常数据发送

图 3-5 展示 MII 下正常数据发送过程。

当有数据需要发送时,需将 mii\_tx\_en 置为 1,保持到数据发送结束时才能变成 0,在 mii\_tx\_en=1 期间,mii\_tx\_er 须一直保持为 0,同时在 mii\_txd 上输出有效数据。 mii\_tx\_en、mii\_tx\_er 和 mii\_txd 在 mii\_tx\_clk 的上升沿完成状态转换。

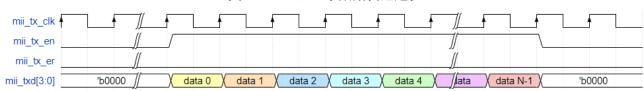



图 3-5 MII 下正常数据发送过程

#### **3.5 RMII**

RMII 的数据传输是在 refclk 时钟下进行的,所有信号同步于 refclk,且 refclk 的频率为 50 MHz。

在数据的传输过程中,不同速率下传输 2bit 数据所占用的时钟周期会有所不同。在 100M 速率下,每 2bit 数据占用 1 个时钟周期进行传输;在 10M 速率下,每 2bit 数据会占用 10 个时钟周期进行数据传输。

当需要传输一字节数据时,数据传输顺序如表 3-2 所示:

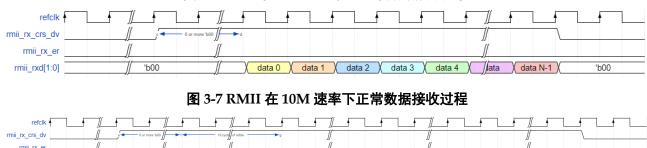
| 传输顺序          | 字节数据  |
|---------------|-------|
| 第 1 个 2bit 数据 | [1:0] |
| 第 2 个 2bit 数据 | [3:2] |
| 第 3 个 2bit 数据 | [5:4] |
| 第 4 个 2bit 数据 | [7:6] |

表 3-2 RMII 下字节数据传输顺序

#### 3.5.1 数据接收

#### 正常数据接收

图 3-6 展示 RMII 在 100M 速率下正常数据接收过程。图 3-7 展示 RMII 在 10M 速率下正常数据接收过程。

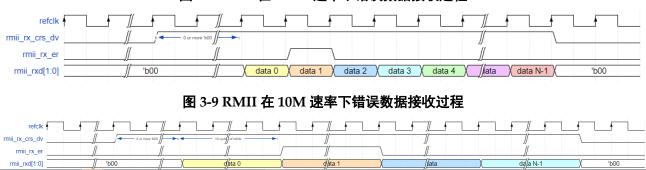

在整个数据接收的过程中,rmii\_rx\_crs\_dv 一直保持为 1,直到接收过程结束才会变成 0,同时 rmii\_rx\_er 也会一直保持为 0,rmii\_rxd 为接收的数据。rmii\_rx\_crs\_dv、rmii\_rx\_er 和 rmii\_rxd 是在 refclk 的上升沿完成状态转换。

需要注意,在 rmii\_rx\_crs\_dv 开始置为 1 后 rmii\_rxd 会出现 0 个或多个时钟周期的空闲数据,即 2'b00。

IPUG1195-1.0 8(20)

3 功能描述 3.5 RMII





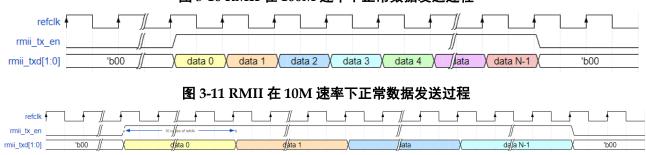

#### 错误数据接收

图 3-8 展示 RMII 在 100M 速率下错误数据接收过程。图 3-9 展示 RMII 在 10M 速率下错误数据接收过程。

当 rmii\_rx\_crs\_dv 为 1 时,若 rmii\_rx\_er 也为 1,则此时 rmii\_rxd 接收的数据为错误数据。

#### 图 3-8 RMII 在 100M 速率下错误数据接收过程




#### 3.5.2 数据发送

#### 正常数据发送

图 3-10 展示 RMII 在 100M 速率下正常数据发送过程。图 3-11 展示 RMII 在 10M 速率下正常数据发送过程。

当有数据进行发送时,会将 rmii\_tx\_en 置为 1,保持到数据发送结束时才能变成 0,在 rmii\_tx\_en=1 期间,rmii\_txd 上为有效数据。rmii\_tx\_en 和 rmii\_txd 在 refclk 的上升沿完成状态转换。

图 3-10 RMII 在 100M 速率下正常数据发送过程



IPUG1195-1.0 9(20)

3 功能描述 3.6 关联 IP

#### 3.6 关联 IP

Gowin MII to RMII IP 可搭配 Gowin Triple Speed Ethernet MAC IP 一起使用,实现支持RMII 接口的 MAC 功能。两者之间通过 MII 接口连接,其连接示意图如图 3-12 所示。

mii\_tx\_clk mii\_tx\_clk mii\_tx\_en mii\_tx\_en mii\_tx\_er mii\_tx\_er mii\_txd[3:0] mii\_txd[3:0] mii\_rx\_clk mii\_rx\_clk Gowin MII to RMII IP Gowin Triple Speed Ethernet MAC IP mii\_rx\_dv mii\_rx\_dv mii\_rx\_er mii\_rx\_er mii\_rxd[3:0] mii\_rxd[3:0] ➤ mii\_col mii\_col mii\_crs mii\_crs

图 3-12 与 Gowin Triple Speed Ethernet MAC IP 连接示意图

IPUG1195-1.0 10(20)

## **4** 端口描述

Gowin MII to RMII IP 端口示意图如图 4-1 所示。

图 4-1 Gowin MII to RMII IP 端口示意图

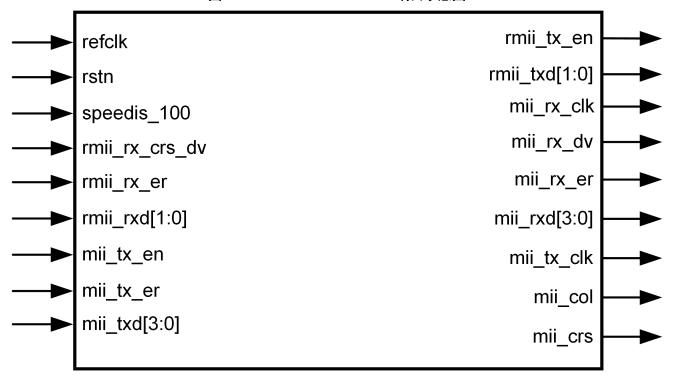



表 4-1 Gowin MII to RMII 端口信号列表

| 序号    | 信号名称           | 类型    | 位宽 | 描述                           | 时钟域    |
|-------|----------------|-------|----|------------------------------|--------|
| 1     | refclk         | Input | 1  | IP 时钟输入,50MHz                |        |
| 2     | rstn           | Input | 1  | IP 复位信号,低有效                  | refclk |
| 3     | speedis_100    | Input | 1  | 速率选择信号:<br>1: 100M<br>0: 10M |        |
| RMILI | RMII Interface |       |    |                              |        |

IPUG1195-1.0 11(20)

| 序号            | 信号名称           | 类型     | 位宽 | 描述           | 时钟域        |
|---------------|----------------|--------|----|--------------|------------|
| 4             | rmii_rx_crs_dv | Input  | 1  | RMII 接收使能/载波 | refclk     |
| 5             | rmii_rx_er     | Input  | 1  | RMII 接收错误    |            |
| 6             | rmii_rxd       | Input  | 2  | RMII 接收数据    |            |
| 7             | rmii_tx_en     | Output | 1  | RMII 发送使能    |            |
| 8             | rmii_txd       | Output | 2  | RMII 发送数据    |            |
| MII Interface |                |        |    |              |            |
| 9             | mii_rx_clk     | Output | 1  | MII 接收时钟     | mii_rx_clk |
| 10            | mii_rx_dv      | Output | 1  | MII 接收使能     |            |
| 11            | mii_rx_er      | Output | 1  | MII 接收错误     |            |
| 12            | mii_rxd        | Output | 4  | MII 接收数据     |            |
| 13            | mii_tx_clk     | Output | 1  | MII 发送时钟     | mii_tx_clk |
| 14            | mii_tx_en      | Input  | 1  | MII 发送使能     |            |
| 15            | mii_tx_er      | Input  | 1  | MII 发送错误     |            |
| 16            | mii_txd        | Input  | 4  | MII 发送数据     |            |
| 17            | mii_col        | Output | 1  | MII 冲突信号     |            |
| 18            | mii_crs        | Output | 1  | MII 载波信号     |            |

IPUG1195-1.0 12(20)

# 5 调用及配置

打开高云半导体云源软件,点击快捷栏" "或菜单栏"Tools > IP Core Generator"启动 IP Core Generator 工具,进行 IP 的调用及配置。

1. 打开 IP Core Generator。 用户创建工程后,点击"IP Core Generator",即可打开 Gowin 的 IP 核产生工具,如图 5-1 所示。

IPUG1195-1.0 13(20)

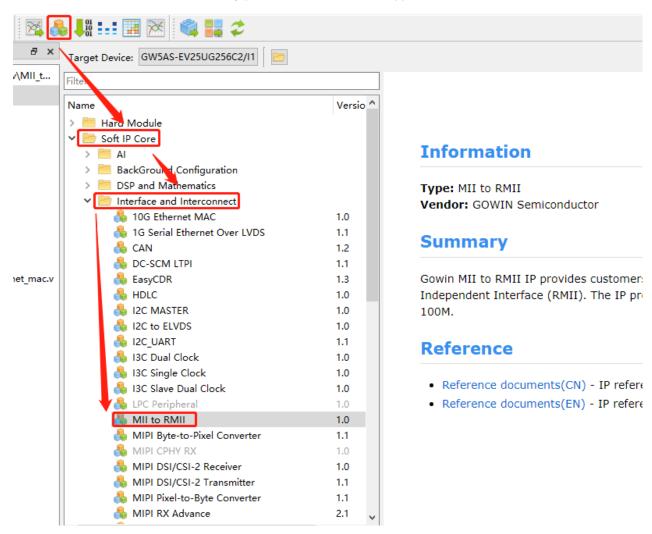
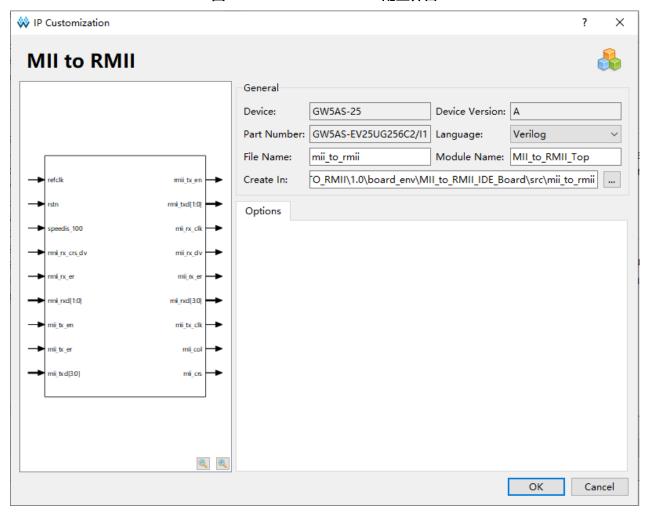




图 5-1 IP Core Generator 界面

#### 2. 打开 IP。

双击"Soft IP Core > Interface and Interconnect > MII to RMII",打开 Gowin MII to RMII IP 界面,如图 5-2 所示。

IPUG1195-1.0 14(20)



#### 图 5-2 Gowin MII to RMII 配置界面

- 可通过修改"File Name", 配置产生的 IP 文件名称。
- 可通过修改"Module Name",配置产生的 IP 顶层模块名称。
- 可通过修改"Options"选项,配置IP其他配置。

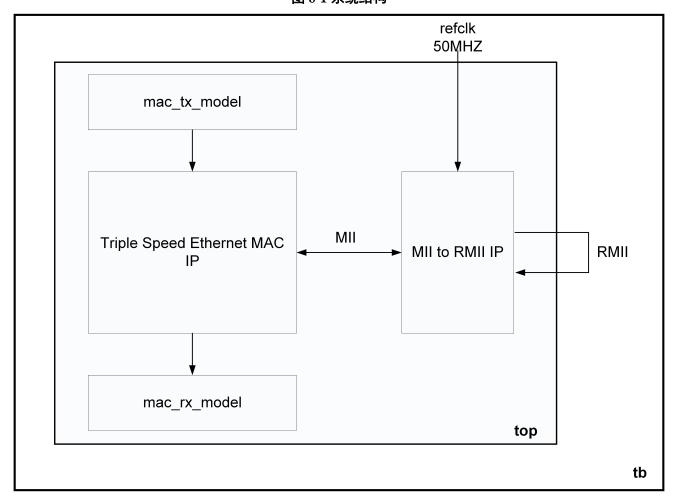
IPUG1195-1.0 15(20)

# 6参考设计

详细信息请参见高云半导体官网 Gowin MII to RMII IP 参考设计。

#### 注!

Gowin MII to RMII IP 的参考设计仅供客户进行功能仿真。


IPUG1195-1.0 16(20)

6 参考设计 6.1 系统结构

#### 6.1 系统结构

功能仿真的系统结构如图 6-1 所示。

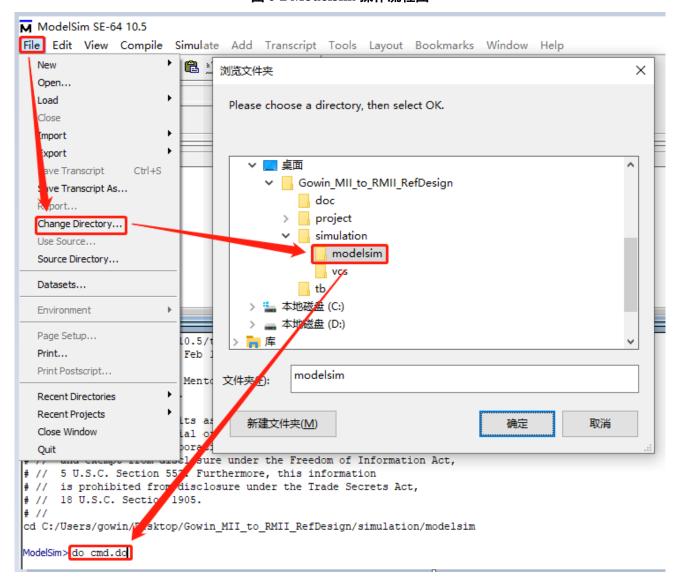
图 6-1 系统结构



- 1. 仿真顶层 tb 提供 50 MHz 时钟 refclk 和 RMII 接口的环回;
- 2. 项层 top 包含 mac\_tx\_model、mac\_rx\_model、Triple Speed Ethernet MAC IP 和 MII to RMII IP:
- 3. mac tx model 用于发送以太网帧, 每帧都携带 1500 字节的数据;
- 4. mac rx model 用于接收以太网帧并检测以太网帧的准确性。

#### 6.2 操作步骤

#### 6.2.1 Modelsim


- 1. 打开 Modelsim 软件,点击菜单栏的"File",从下拉框内选择"Change Directory";
- 2. 在浏览路径中找到下载的参考设计 Gowin\_MII\_to\_RMII\_RefDesign,并依次选择 "simulation"、"modelsim"文件夹;

IPUG1195-1.0 17(20)

6.2 操作步骤

3. 在 Modelsim 的指令栏输入"do cmd.do"指令,按回车键后开始进行功能仿真。

#### 图 6-2 Modelsim 操作流程图



#### 6.2.2 VCS

- 1. 在安装 VCS 的 Linux 环境下打开终端(命令行);
- 2. 通过 cd 指令进入下载的参考设计 Gowin\_MII\_to\_RMII\_RefDesign 文件夹,再依次进入 "simulation"、"vcs"文件夹;
- 3. 输入"vcs.sh"指令后回车,开始进行功能仿真。

IPUG1195-1.0 18(20)

7 文件交付 7.1 文档

# 7 文件交付

Gowin MII to RMII IP 交付文件主要包含文档和参考设计。

#### 7.1 文档

文件夹主要包含用户指南 PDF 文档。

表 7-1 文档列表

| 名称                                  | 描述                        |
|-------------------------------------|---------------------------|
| IPUG1195, Gowin MII to RMII IP 用户指南 | Gowin MII to RMII IP 用户手册 |

#### 7.2 设计源代码(加密)

加密代码文件夹包含 Gowin MII to RMII IP 的 RTL 加密代码,供 GUI 使用,以配合高云半导体云源软件产生用户所需的 IP 核。

表 7-2 Gowin MII to RMII IP 设计源代码列表

| 名称                    | 描述                     |
|-----------------------|------------------------|
| mii_to_rmii_wrap.v    | IP 核项层文件,给用户提供接口信息,不加密 |
| mii_to_rmii.v         | IP 核 RTL 设计文件,加密       |
| static_macro_define.v | 本地静态参数配置文件,不加密         |
| define.vh             | IP 配置文件,需要 GUI 生成      |

#### 7.3 参考设计

参考设计文件夹主要包含 Gowin MII to RMII IP 顶层文件及工程文件夹等。

表 7-3 参考设计文件列表

| 文件名称           | 描述              |
|----------------|-----------------|
| top.v          | 参考设计的项层 module  |
| mac_rx_model.v | MAC 层 RX 信号控制模块 |

IPUG1195-1.0 19(20)

7.3 参考设计

| 文件名称                      | 描述                               |
|---------------------------|----------------------------------|
| mac_tx_model.v            | MAC 层 TX 信号控制模块                  |
| triple_speed_ethernet_mac | Triple Speed Ethernet MAC IP 文件夹 |
| mii_to_rmii               | MII to RMII IP 文件夹               |

IPUG1195-1.0 20(20)

