

Gowin ソフトウェア ユーザーガイド

SUG100-4.4.2J, 2025-06-27

著作権について(2025)

著作権に関する全ての権利は、Guangdong Gowin Semiconductor Corporation に留保 されています。

GOジN高云、ジ、Gowin、Arora、LittleBee、及び GOWINSEMI は、当社により、中国、米国特許商標庁、及びその他の国において登録されています。商標又はサービスマークとして特定されたその他全ての文字やロゴは、それぞれの権利者に帰属しています。何れの団体及び個人も、当社の書面による許可を得ず、本文書の内容の一部もしくは全部を、いかなる視聴覚的、電子的、機械的、複写、録音等の手段によりもしくは形式により、伝搬又は複製をしてはなりません。

免責事項

当社は、GOWINSEMI Terms and Conditions of Sale (GOWINSEMI取引条件)に規定されてい る内容を除き、(明示的か又は黙示的かに拘わらず)いかなる保証もせず、また、知的財産 権や材料の使用によりあなたのハードウェア、ソフトウェア、データ、又は財産が被った 損害についても責任を負いません。当社は、事前の通知なく、いつでも本文書の内容を変 更することができます。本文書を参照する何れの団体及び個人も、最新の文書やエラッタ (不具合情報)については、当社に問い合わせる必要があります。

バージョン履歴

日付	バージョン	説明	
2021/06/17	251	● スクリーンショットとその説明の一部を更新。	
2021/00/17	2.00	 Synplify Pro関連のコンテンツを削除。 	
		● SSPIおよびMSPIのピン多重化情報を更新。	
		● -ireg_in_iob / -oreg_in_iob / -ioreg_in_iobの説明を更新。	
2021/11/02	2.6J	● MODEのピン多重化の構成を削除。	
		● Place & RouteにBitStream構成項目(Power On Reset)を追加。	
		● シミュレーションファイルの紹介を追加。	
2022/05/20	2.7J	Loading Rateの値を更新。	
2022/07/28	28.1	● Place & Routeに構成オプション(Route Maxfan)を追加。	
2022/01/20	2.00	● Libraryの使用方法を追加。	
		● 構成オプション(power_on_reset)の名称を更新。	
		● Bitstreamの構成オプション(Turn Off Bandgap)を追加。	
2022/10/28	2.9J	 シミュレーションと検証のクラウド・プラットフォーム(DSim 	
		Cloud)を追加。	
		 Device Versionという情報を追加。 A Device Versionという情報を追加。 	
		 Synthesizeワインドワに構成オフション(IciPre)を追加。 	
2022/12/16	3.0J	 構成オフションBackground Programmingの値をInternalから CoCopfig/LipsrLagio/こ本更 	
		Gueon & Pouto ウィンドウに様式オプション/Concrete Poet PrP	
		● Flace & Roule 9 イントウに構成オンション (Generate Post-Firk VHDL Simulation Model File)を追加。	
		 構成オプションBackground Programmingの値GoConfig/UserLogic 	
		をGoConfigとUserLogicに分け、その説明を更新。	
2023/03/31	3.1J	● ツールバーにFloorPlannerとTiming Constraints Editorを追加。	
		● Tclコマンド(clock_route_order)を追加。	
2022/04/20	2.21	● Place & RouteとBitstreamの構成オプションを更新。	
2023/04/20	3.ZJ	● Bitstreamの構成オプション(Multi BootとMSPI JUMP)を追加。	
		● Bitstreamの構成オプション(Enable External Master Config Clockと	
2023/05/25	3.3J	Enable CMSER)を追加。	
		● ConfigurationウィンドウにVCCX構成用のGlobal画面を追加。	
2023/06/30	3.4J	Ram R/W Checkオプションをデフォルトでチェックされていないように	
		更新。	
		● GW5A-25-MBGA121Nの場合の構成オプションUse SSPI as regular	
		IUをチェック済みかつ変更不可の状態に更新。	
2023/08/18	3.5J	● GW5AT-138/GW5AST-138/GW5A-138デハイスの場合の構成オフシ コン(Place input register to IOB Place output register to IOB お上	
2023/00/10		びPlace input register to IOB、のデフォルト値をFalseに変更。	
		● GW5AT-138/GW5AST-138/GW5A-138デバイスのPlace & Routeに	
		新しい構成オプションReplicate Resourcesを追加。	
		● GW5A(S)(T)-138およびGW5A(R)-25のLoading Rateの値を更新。	
2023/09/28	3.6J	● CMSERオプションの情報を更新。	

日付	バージョン	説明	
		● Feature sysControlオプションにおけるMSPI JUMPオプションを更 新。	
2022/10/21	271	● 「図4-16プロジェクトファイル属性ダイアログボックス」を更新。	
2023/10/31	3.73	● create_projectおよびimport_filesというTclコマンドを追加。	
		● Program Deviceという名称をProgrammerに変更。	
		● Place & Route > Place Optionに値2を追加。	
2023/11/30	3.8J	● LittleBeeファミリーとAroraファミリーFPGA製品のLoading Rateの 値を更新。	
		● Tclコマンド(run close)を追加。	
		● Output Base Nameオプションを追加。	
		● GW2AN-9XおよびGW2AN-18XのLoading Rateの値を更新。	
2024/02/02	3.9J	● Enable CMSERオプションをEnable SEU Handlerに更新。	
		● Frequency構成用のConstraintsオプションを追加。	
2024/03/29	4 0.1	● GW5AT-60のLoading Rateの値を更新。	
202 1/00/20	1.00	● Bitstreamの構成オプション(Enable CTP)を追加。	
		● Tclコマンド(open_project)を追加。	
2024/06/28	4.1J	● Place & Routeに構成オプション「VCC」を追加。	
		● 仮想入力出力デバッグ・ツールを追加。	
2024/08/09	4.1.1J	● Place & Route > Place Option に値 3 を追加。	
		● open_project コマンドの説明を更新。	
		● Place & Route > Place Option に値 4 を追加。	
2024/10/25	4.2J	● Cバージョンの GW1N-2/GW1NR-2/GW1N-1P5 の構成オプション	
		Background Programming」に値 GoConfig Model を追加。	
		 Place & Route に構成オブジョン「Incremental PIR」を迫加。 Usersets きょうどうさん 声換化さら加 	
2024/12/31	4.3J	 ■ Hierarchy ワイントワに使家機能を追加。 ■ アイ・ガイアガラノハビット CoPort た Php 	
		 ワイ・ダイブダブム分析フール Gobert を追加。 D'OL 	
2025/02/28	1 1 1	 BitStream オワンヨンにわける SPI Flash アトレスのアクセスモート k Normal から Single に変更 	
2023/02/20	4.40	• 「8 Tcl コマンドの説明」を更新。	
		 ● 夜間チードを追加 	
2025/04/30	4.4.1J	● デバイス選択ウィンドウに検索機能を追加。	
		csrファイルを指定するための新しい構成オプションと T clコマンドを追	
2025/06/27	4.4.2J		

目次

目次	i
図一覧	v
表一覧	viii
1 本マニュアルについて	1
1.1 マニュアルの内容	1
1.2 関連ドキュメント	1
1.3 用語、略語	2
1.4 テクニカル・サポートとフィードバック	3
2 Gowin ソフトウェアの概要	4
2.1 概要	4
2.2 サポートされるデバイス	5
2.3 Gowin ソフトウェアのインストールと起動	6
3 Gowin ソフトウェアの GUI	7
3.1 タイトルバー	8
3.2 メニューバー	8
3.2.1 File メニュー	8
3.2.2 Edit メニュー	8
3.2.3 Project メニュー	9
3.2.4 Tools メニュー	9
3.2.5 Window メニュー	10
3.2.6 Help メニュー	11
3.3 ツールバー	11
3.4 プロジェクト管理エリア(Design)	12
3.5 プロセス管理エリア (Process)	12
3.6 設計階層表示エリア(Hierarchy)	12
3.6.1 右クリックメニュー	12
3.6.2 リソース情報の表示	14
3.6.3 ファイルの暗号化	14
SUG100-4.4.2J	

i

	3.6.4 検索機能	17
	3.7 ソースファイル編集エリア	17
	3.8 インフォメーション出力エリア	19
4	Gowin ソフトウェアの使用	21
	4.1 プロジェクトの新規作成	21
	4.2 プロジェクトを開く	23
	4.3 プロジェクトの編集	25
	4.3.1 プロジェクトデバイスの編集	25
	4.3.2 プロジェクトファイルの編集	26
	4.3.3 プロジェクトの構成	33
	4.4 プロジェクトのプロセス管理	60
	4.4.1 Design Summary	60
	4.4.2 User Constraints	61
	4.4.3 Synthesize	61
	4.4.4 Place & Route	63
	4.4.5 Programer	64
	4.5 プロジェクトのアーカイブと復元	65
	4.5.1 プロジェクトのアーカイブ	65
	4.5.2 アーカイブされたプロジェクトの復元	66
	4.6 ソフトウェアの終了	67
5	Gowin ソフトウェアの統合ツール	68
	5.1 物理制約エディタ	68
	5.2 タイミング制約エディタ	69
	5.3 IP Core Generator	70
	5.4 Gowin アナライザオシロスコープ	72
	5.5 Gowin パワーアナライザ	74
	5.6 メモリ初期化ファイルエディタ	75
	5.7 User Flash 初期化ファイルエディタ	78
	5.7.1 2 進数形式(Bin File)	78
	5.7.2 16 進数形式(Hex File)	79
	5.8 回路図ビューア	81
	5.9 仮想入出力デバッグ・ツール	82
	5.10 アイ・ダイアグラム分析ツール GoBert	83
6	ファイルの出力	85
-	61 今成レポート	85
	6.2 配置配線レポート	
	······································	

目次

6.3 ポート属性レポート	
6.4 タイミングレポート	
6.5 消費電力解析レポート	
7 シミュレーションファイル	90
7.1 機能シミュレーションファイル	
7.2 タイミングシミュレーションファイル	
8 Tcl コマンドの説明	92
8.1 コマンド・ライン・モードを開始	
8.1.1 gw_sh.exe	
8.2 コマンド	
8.2.1 コマンドの分類	
8.2.2 コマンド一覧	
8.3 コマンドの説明	
8.3.1 add_file	
8.3.2 create_ipc	
8.3.3 create_project	
8.3.4 generate_target	
8.3.5 get_ips	
8.3.6 import_files	
8.3.7 list_property	
8.3.8 open_project	100
8.3.9 read_ipc	101
8.3.10 report_property	101
8.3.11 rm_file	102
8.3.12 run	103
8.3.13 run close	103
8.3.14 saveto	
8.3.15 set_device	
8.3.16 set_file_enable	
8.3.17 set_file_prop	
0.3.10 set_csi	
8.3.20 set property	
8.3.21 source	
8.3.22 write ip tcl	
9. 付録	155
9. I ノアイバの説明	

図-」	覧
-----	---

図 3-1 ソフトウェアの GUI	7
図 3-2 Hierarchy ウィンドウでの右クリックメニュー	13
図 3-3 Hierarchy ウィンドウでのリソース情報の表示	14
図 3-4 Pack User Design ダイアログボックス	15
図 3-5 Pack User Design ダイアログボックス出力情報	16
図 3-6 Pack User Design ダイアログボックス暗号化失敗情報	16
図 3-7 Hierarchy ウィンドウの検索機能	17
図 3-8 Find & Replace ダイアログボックス	18
図 3-9 Search Result ウィンドウ	18
図 3-10 インフォメーション出力エリア	19
図 3-11 Tcl コマンド編集ウィンドウ	20
図 4-1 プロジェクトの新規作成	21
図 4-2 プロジェクト新規作成ウィザード	22
図 4-3 FPGA デバイスの情報の設定	23
図 4-4 プロジェクト情報	23
図 4-5 ファイルを開く	24
図 4-6 プロジェクトファイル・ウィンドウ	25
図 4-7 チップの型番の構成	26
図 4-8 ファイル新規作成ダイアログボックス	27
図 4-9 Verilog File の新規作成	27
図 4-10 構成ファイル新規作成ダイアログボックス	28
図 4-11 GPA 構成ファイルウィンドウ	28
図 4-12 Design ウィンドウの右クリックメニュー	29
図 4-13 プロジェクトファイル編集メニュー	30
図 4-14 外部エディタ	31
図 4-15 Save Modified Files ダイアログボックス	31
図 4-16 プロジェクトファイル属性ダイアログボックス	32
図 4-17 プロジェクトの構成オプション	33
図 4-18 General オプション	. 34

図 4-19 Frequency(MHz)オプション	34
図 4-20 GowinSynthesis のパラメータの構成	35
図 4-21 配置配線オプションの構成	36
図 4-22 Voltage オプションの構成	38
図 4-23 配置オプションの構成	38
図 4-24 配線オプションの構成	39
図 4-25 多重化ピンオプションの構成	40
図 4-26 Unused Pin オプション	41
図 4-27 Incremental PnR オプション	42
図 4-28 Bitstream の General オプションの構成	43
図 4-29 sysControl オプションの構成	45
図 4-30 Background Programming:I2C	55
図 4-31 Background Programming:I2C/JTAG/SSPI/QSSPI	55
図 4-32 Frequency Divider オプション	57
図 4-33 Enable SEU Handler オプション	57
図 4-34 Enable Error Injection オプション	57
図 4-35 GW5A(N)(S)(R)(T)以外のデバイスの Feature sysControl オプション	58
図 4-36 GW5A(N)(S)(R)(T)デバイスの Feature sysControl オプション	59
図 4-37 Process ウィンドウ	60
図 4-38 Design Summary	61
図 4-39 Synthesize の右クリックメニュー	63
図 4-40 Programmer の GUI	65
図 4-41 Archive Project ダイアログボックス	66
図 4-42 Restore Archived Project ダイアログボックス	67
図 5-1 Chip Array ウィンドウ	69
図 5-2 Package View ウィンドウ	69
図 5-3 タイミング制約作成インターフェース	70
図 5-4 IP Core Generator ウィンドウ	71
図 5-5 GAO 構成ファイルウィンドウ	73
図 5-6 GAO の GUI	73
図 5-7 GPA 構成ファイルウィンドウ	75
図 5-8 初期化ファイルの新規作成	77
図 5-9 New File ダイアログボックス	77
図 5-10 初期化ファイル構成ウィンドウ	77
図 5-11 列数の構成	78
図 5-12 一括設定	78
図 5-13 初期化ファイルの新規作成	80

図 5-14 New File ダイアログボックス	80
図 5-15 初期化ファイル構成ウィンドウ	80
図 5-16 一括設定	
図 5-17 RTL Design Viewer ウィンドウ	82
図 5-18 Post-Synthesis Netlist Viewer ウィンドウ	82
図 5-19 GVIO 構成ファイルウィンドウ	83
図 5-20 GoBert ウィンドウ	
図 6-1 GowinSynthesis の合成レポート	85
⊠ 6-2 Place & Route Report	
☑ 6-3 Ports & Pins Report	
図 6-4 タイミングレポート内容	
図 6-5 電力解析レポート	
図 7-1 オプションの構成	91

表 1-1 用語、略語	
表 3-1 一般的な Warning または Error メッセージ1	9
表 4-1 Place & Route 各オプションの説明	6
表 4-2 BitStream の構成オプションの意味 4	.3
表 4-3 Loading Rate の値と計算方法(一)4	.7
表 4-4 Loading Rate の値と計算方法(二)4	.8
表 4-5 Loading Rate の値と計算方法(三)4	.9
表 4-6 Loading Rate の値と計算方法(四)5	1
表 4-7 Loading Rate の値と計算方法(五)5	2
表 4-8 Loading Rate の値と計算方法(六)5	2
表 4-9 Loading Rate の値と計算方法(七)5	3
表 4-10 Background Programming の値5	5
表 4-11 サブ構成オプション	9
表 4-12 サブ構成オプション	9
表 9-1 ソースファイル	55
表 9-2 実行ファイル1	56

1本マニュアルについて

1.1 マニュアルの内容

このマニュアルは、主に Gowin ソフトウェアのインストールと操作 について説明し、ユーザーが Gowin ソフトウェアを使いこなせるように 作成されています。本マニュアルに記載のソフトウェア GUI のスクリー ンショットは、Gowin ソフトウェア V1.9.11.03 バージョンの場合のもの です。ソフトウェアのアップデートにより、一部の内容が変更される場合 があります。

1.2 関連ドキュメント

GOWIN セミコンダクターのホームページ <u>www.gowinsemi.com/ja</u>から、以下の関連ドキュメントをダウンロード及び閲覧できます。

- Gowin タイミング制約ユーザーガイド(<u>SUG940</u>)
- Gowin 物理制約ユーザーガイド(<u>SUG935</u>)
- Gowin アナライザオシロスコープ ユーザーガイド(SUG114)
- Gowin パワーアナライザ ユーザーガイド(<u>SUG282</u>)
- Gowin Programmer ユーザーガイド(<u>SUG502</u>)
- Gowin BSRAM & SSRAM ユーザーガイド(<u>UG285</u>)
- Gowin プリミティブ ユーザーガイド(<u>SUG283</u>)
- Gowin Clock ユーザーガイド(<u>UG286</u>)
- Gowin DSP ユーザーガイド(<u>UG287</u>)
- Gowin プログラマブル汎用 IO(GPIO)ユーザーガイド(<u>UG289</u>)
- Gowin User Flash ユーザーガイド(<u>UG295</u>)
- Arora V ADC ユーザーガイド(<u>UG299</u>)
- Arora V Clock ユーザーガイド(<u>UG306</u>)
- Arora V DSP ユーザーガイド(<u>UG305</u>)

- Arora V プログラマブル汎用 IO(GPIO)ユーザーガイド(<u>UG304</u>)
- Arora V BSRAM & SSRAM ユーザーガイド(<u>UG300</u>)
- Arora V物理制約ユーザーガイド(<u>SUG1018</u>)
- Gowin Virtual Input Output ツール ユーザーガイド(SUG1189)
- Gowin GoBert ツール ユーザーガイド(<u>SUG1198</u>)

1.3 用語、略語

本マニュアルで使用される用語、略語、及びその意味を表 1-1 に示します。

	表	1-1	用語、	略語
--	---	-----	-----	----

用語、略語	正式名称	意味
CRC	Cyclic Redundancy Check	巡回冗長検査
FloorPlanner	FloorPlanner	物理制約エディタ
FPGA	Field Programmable Gate Array	フィールド・プログラ マブル・ゲート・アレ イ
GAO	Gowin Analyzer Oscilloscope	Gowinアナライザオシ ロスコープ
GowinSynthesis	GowinSynthesis	GOWINセミコンダクタ ーの合成ツール
GPA	Gowin Power Analyzer	Gowinパワーアナライ ザ
GVIO	Gowin Virtual Input/Output	仮想入力出力
IP Core	Intellectual Property Core	設計資産コア
PCIe	Peripheral Component Interconnect Express	ペリフェラル・コンポ ーネント・インターコ ネクト・エクスプレス
PnR	Place & Route	配置配線
Schematic Viewer	Schematic Viewer	HDL回路図ビューア
SEU Handler	Single-Event Upsets Handler	シングル・イベント・ アップセット・ハンド ラ
Tcl	Tool Command Language	ツール・コマンド言語
Timing Constraints Editor	Timing Constraints Editor	タイミング制約エディ タ

1.4 テクニカル・サポートとフィードバック

GOWIN セミコンダクターは、包括的な技術サポートをご提供しています。使用に関するご質問、ご意見については、直接弊社までお問い合わせください。

ホームページ:<u>www.gowinsemi.com/ja</u>

E-mail : <u>support@gowinsemi.com</u>

2Gowin ソフトウェアの概要

2.1 概要

Gowin ソフトウェアは、Gowin FPGA 用に特別に設計された、FPGA 設計および検証環境を提供する EDA ソフトウェアです。Gowin FPGA の 低消費電力と低コスト特性のために最適化された Gowin ソフトウェア は、RTL 回路機能の記述から FPGA ビットストリームファイルの生成ま でのプロセス全体に対応すると同時に、最適化設計、自動設計、グラフィ ック・インタラクティブ・デザインなどの機能を備えた、高性能で使いや すい EDA ソフトウェアです。

Gowin ソフトウェアの主な機能:

- Gowin FPGA のすべての機能をサポートし、RTL 回路機能の記述から FPGA ビットストリームファイルの生成までの設計フローをサポート
- 合成ツール GowinSynthesis は、高性能のロジック設計と合成をサポート
- 自動デザインとインタラクティブなグラフィック・デザインの併用を サポート
- Centos6.8/7.0/7.3/7.5/8.2(64 bits)、Ubuntu18.04/20.04LTS、 Win7/8/10/11(32 bits/64 bits)、Win XP (32 bits)オペレーティングシス テムをサポート
- 千万規模のゲートレベルのソフトウェア
- VHDL、Verilog HDL、および SystemVerilog 言語をサポート
- Gowin FPGA の最適化されたアーキテクチャをサポート
- オリジナルの高速で高性能なアルゴリズムを備えた配置配線システム
- 正確なタイミング解析とタイミングレポート
- クロックの分析と制御により、より良いタイミングパフォーマンスを 提供
- さまざまなタイミング制約と物理制約をサポート

- ハードウェア回路信号をリアルタイムで監視して保存し、タイミング 波形図に視覚的に表示することをサポート
- リソース共有テクノロジーにより、チップの使用率を向上させ、コストを削減

Gowin ソフトウェアの主な特徴:

- 統合設計
 - 設計は段階的に完了することも、一括自動的に完了することも可能
 - コマンド・ライン・モードと GUI モードをサポート
 - スクリプト設計により、設計プロセス全体に影響を与えることなく、単一のモジュールを柔軟に設計可能
- 最適化設計
 - ネットリストの最適化設計
 - 高速のタイミングの最適化解析と設計
 - リソースの分析と最適化
- 階層的な設計と分析
 - 階層的なネットリスト構造入力および出力をサポート
 - フラット化ネットリストの入力および出力をサポート
 - ネットリストの階層的なグラフィック表示、追跡、および分析を サポート
- 便利で柔軟なインタラクティブ・グラフィックデザイン
 - シンプルで明確な GUI
 - プロジェクト、設計モジュール、ツール、および出力などの要素
 を含む
 - 設計制約の入力、選択、更新
 - 高速のタイミング解析とレポート
 - Push button 設計手法

2.2 サポートされるデバイス

Gowin ソフトウェアは現在、LittleBee ファミリーと Arora ファミリーの FPGA 製品をサポートしています。FPGA のタイプ、主なリソース、およびパッケージについては、Gowin のホームページを参照してください。

- LittleBee ファミリー: <u>https://www.gowinsemi.com/ja/product/detail/2/</u>
- Arora ファミリー: <u>https://www.gowinsemi.com/ja/product/detail/1/</u>

• Arora V FPGA : <u>https://www.gowinsemi.com/en/product/detail/60/</u>

注記:

ソフトウェアのバージョンによって、サポートされるチップが異なる場合がありま す。

2.3 Gowin ソフトウェアのインストールと起動

Windows では、Gowin ソフトウェアのインストールパッケージをダ ブルクリックしてインストールします。インストールが完了すると、デフ ォルトで PC のデスクトップにショートカットが作成されます。Linux で は、フォルダを解凍してソフトウェアをインストールします。

ソフトウェアのインストール後、最初の起動時にライセンスを構成す る必要があります。ライセンスは、GOWIN セミコンダクターとユーザー が署名した標準契約であり、ソフトウェアユーザーのソフトウェア使用の 権利と GOWIN セミコンダクターの義務を規定します。

注記:

Gowin ソフトウェアのインストールは、漢字のあるパスをサポートしません。 Gowin ソフトウェアのインストールについては、『Gowin ソフトウェアクイックイン ストール ユーザーガイド(<u>SUG501)</u>』を参照してください。

3Gowin ソフトウェアの GUI

図 3-1 に示すように、Gowin ソフトウェアの GUI は主に、タイトル バー、メニューバー、ツールバー、プロジェクト管理エリア(Design)、プ ロセス管理エリア(Process)、ソースファイル編集エリア、階層表示エリ ア(Hierarchy)、インフォメーション出力エリア、および Tcl コマンド編集 エリアで構成されています。

図 3-1 ソフトウェアの GUI

3.1 タイトルバー

Gowin ソフトウェアの名前と現在開いているファイルの名前が示されます。

3.2 メニューバー

File、Edit、Project、Tools、Window、Help などがあります。詳細は 次のとおりです。

3.2.1 File メニュー

- Open Example Project…: サンプルプロジェクトを開く
- New (Ctrl+N):新規作成
- Open (Ctrl+O) : 開く
- Save (Ctrl+S) : 保存
- Save As…:別名で保存
- Save All (Ctrl+Shift+S): すべてのファイルを保存
- Close:閉じる
- Close All: すべてのファイルを閉じる
- Close Project:現在のプロジェクトを閉じる
- Print Preview…: 印刷プレビュー
- Print… (Ctrl+P): 印刷
- Recent Files: 最近開いたファイルを再度選択して開く
- Recent Projects:最近開いたプロジェクトを再度選択して開く
- Exit:ソフトウェアを終了

3.2.2 Edit メニュー

- Undo (Ctrl+Z): 取り消し
- Redo (Ctrl+Y) : やり直し
- Cut (Ctrl+X):切り取り

- Copy (Ctrl+C) : コピー
- Paste (Ctrl+V):貼り付け
- Select All (Ctrl+A): すべて選択
- Find & Replace (Ctrl+F): キーワード検索及び変更
- Toggle Comment Selection (Ctrl+/): 選択された内容にコメントを追加
- Increase Indent (Tab): インデントを増やす
- Decrease Indent (Shift+Tab): インデントを減らす
- Macros:マクロ。このオプションには3つのサブオプションがあり ます。
 - Start Record : [Start Record]をクリックすると、IDE で編集可能 なファイルに対する編集操作が記録されます。
 - Stop Recording:記録を停止します。
 - Play Macro (Alt+R): [Play Macro]をクリックして、編集可能なファイルに対して記録された操作を実行します。

3.2.3 Project メニュー

- Archive Project : \mathcal{T} $\square \mathcal{V}$ $\square \mathcal{V}$ $\square \mathcal{V}$ $\square \mathcal{V}$
- **Restore Archived Project**: アーカイブされたプロジェクトを復元
- Set Device:現在のプロジェクトのデバイス情報を設定
- Configuration:構成画面を開く
- Design Summary:現在のプロジェクトに関する情報の詳細を表示

3.2.4 Tools メニュー

- Start Page:スタートページ。Recent Projects、Quick Start、Tools、 および User Manuals が含まれます。
 - Recent Projects:最近開いたプロジェクトのリスト(最大 10 個の プロジェクト)。
 - Quick Start: New Project、Open Project、Open Example Project が含まれます。
 - Tools: Floorplanner(物理制約エディタの起動)、Timing Constraints Editor(タイミング制約エディタの起動)、 Programmer(プログラマの起動)が含まれます。
 - User Manuals : Manual for LittleBee (LittleBee ファミリーのマニ ュアル)、Manual for Arora (Arora ファミリーのマニュアル)が 含まれます。
- Gowin Analyzer Oscilloscope : Gowin アナライザオシロスコープ(つ

まり、ロジック・アナライザー)。

- Schematic Viewer: HDL 回路図ビューア。
- IP Core Generator : IP Core ジェネレーター。
- FloorPlanner:物理制約エディタ。
- Timing Constraints Editor:タイミング制約エディタ。
- DSim:シミュレーションと検証のクラウド・プラットフォーム。
- GoBert : SerDes 分析ツール。
- Options: Environment、Text Editor、External Editor が含まれます。
 - Environment: Theme(表示モード)、Language(言語)、Toolbar Icon Size (ツールバー・アイコン・サイズ)、Default New Project Directory(デフォルトの新規プロジェクトのパス)などの IDE パラ メータを設定します。表示モード(Theme)には、従来モード (Classic)と夜間モード(Dark)の2つのオプションがあります。表 示モードまたは言語を設定した後、その設定を有効にするには、 Gowin ソフトウェアを再起動する必要があります。
 - Text Editor:フォント、フォント・サイズ、配色、行番号を表示 するかどうか、空白文字を視覚化するかどうか、現在の行をハイ ライト表示するかどうか、一致する括弧をハイライト表示するか どうかなど、テキストエディタの属性を設定します。
 - External Editor: サードパーティのテキストエディタを設定します。常にサードパーティのエディタを使用して設計ファイルを開くかどうかを選択できます。

3.2.5 Window メニュー

- Full Screen (F11): フルスクリーン表示。
- Tile: タイル表示。
- Cascade : カスケード表示。
- Reset Layout:初期設定に戻す。
- Panels: インターフェースの各エリアで表示される部分を選択。
 Design、Hierarchy、Process、Message、および Console があります。
- Start Page: ソースファイル編集エリアで Start Page を表示。
- Design Summary: ソースファイル編集エリアで Design Page を表示。このページには、General と Target Device の 2 つのコンテンツが含まれています。詳細は次のとおりです。
 - General: プロジェクトパス情報や使用される合成ツールなど、

プロジェクトの概要情報。

- Target Device:パッケージ情報、スピードグレード、コア電圧な どのデバイス情報。

3.2.6 Help メニュー

- View Help: ソフトウェアのコンパイル中の出力情報のヘルプドキュメントを見る。
- Contact Us:お問い合わせ。
- Manage License: ライセンスの管理。ライセンス構成管理方法の詳細については、『Gowin ソフトウェアクイックインストール ユーザーガイド(<u>SUG501)</u>』を参照してください。
- About:ソフトウェアのバージョン情報。

3.3 ツールバー

一般的に使用されるいくつかの機能のボタンがあります。左から右 へ:

- 「□」(Ctrl+N):ファイルまたはプロジェクトを新規作成(New File or Project)
- 「□」: (Ctrl+O): ファイルまたはプロジェクトを開く(Open File or Project)
- 「<mark>|||</mark>」(Ctrl+S):ファイルを保存(Save)
- 「「嘯」(Ctrl+Shift+S):すべてのファイルを保存(Save All)
- 「■」(Ctrl+P):印刷 (Print)
- 「▲」(Ctrl+Z):取り消し(Undo)
- 「▲」(Ctrl+Y):やり直し(Redo)
- 「▶」(Ctrl+X):切り取り(Cut)
- 「□□」(Ctrl+C): コピー(Copy)
- 「■」(Ctrl+V):貼り付け(Paste)
- 「鸓」(Ctrl+F):検索(Find)
- 「図」: Gowin アナライザオシロスコープ(Gowin Analyzer Oscilloscope)を起動。詳しくは、『Gowin アナライザオシロスコープ ユーザーガイド(SUG114)』を参照してください
- 「[▲]」: IP Core ジェネレーター (IP Core Generator) を起動
- 「↓↓」: プログラマ (Programmer) を起動。詳しくは、『Gowin

Programmer ユーザーガイド(<u>SUG502</u>)』を参照してください

- 「₽」:シミュレーションと検証のクラウド・プラットフォーム (DSim)を起動
- 「^{●●}」:アイ・ダイアグラム分析ツールを起動
- 「<u>■</u>]:物理制約エディタ(FloorPlanner)を起動。詳しくは、 『Gowin 物理制約ユーザーガイド(<u>SUG935</u>)』を参照してください
- 「図」:タイミング制約エディタ(Timing Constraints Editor)を起 動。詳しくは、『Gowin タイミング制約ユーザーガイド(<u>SUG940</u>)』を 参照してください
- 「[■]」: 合成を実行(Run Synthesis)
- 「<mark>壨</mark>」: 配置配線を実行(Run Place & Route)
- 「~」:合成、配置配線を実行(Run All)

3.4 プロジェクト管理エリア(Design)

プロジェクト及びその関連ファイルの管理と表示機能を提供します。 プロジェクトで使用されるデバイス情報、設計ファイル、制約ファイル、 構成ファイルなどを表示または編集できます。

3.5 プロセス管理エリア(Process)

ユーザーの FPGA 設計フローを表示します。これには合成 (Synthesize)、配置配線(Place & Route)、デバイスのプログラミング (Programmer)が含まれます。また、タイミング制約と物理制約ツールを ダブルクリックして、制約ファイルを編集することができます。

3.6 設計階層表示エリア(Hierarchy)

設計ファイルを読み込んだ後、Gowin ソフトウェアはまず設計ファ イルを解析し、Hierarchy ウィンドウに現在のプロジェクトの設計階層を 表示します。Hierarchy ウィンドウを介して、モジュールの定義とインス タンスの場所を特定することができ、モジュールをトップ・モジュールと して設定することもできます。Hierarchy ウィンドウでは、Unit 列には設 計ファイルのモジュール階層、Files 列にはモジュール定義があるファイ ルが表示されます。さらに、Hierarchy ウィンドウでは、モジュール名ま たはファイル名でプロジェクトの設計ファイルを検索することができま す。Hierarchy は現在、Verilog 言語、VHDL 言語、および System Verilog 言語の解析をサポートしています。

3.6.1 右クリックメニュー

Hierarchy ウィンドウのモジュールの右クリックメニューで現在サポートされている機能:

- Goto Module Instantiation: ソースファイル内のこのモジュールのインスタンスの場所にジャンプします。デフォルトでは、Gowin ソフトウェアが提供するエディタで開きます。メニューバーの Tools > Options > External Editor でサードパーティのエディタが構成されていて、「Always Use External Editor」がチェックされている場合、Goto Module Instantiation は、デフォルトでサードパーティのエディタを使用してソースファイルを開きます。
- Goto Module Instantiation With ...: ソースファイル内のこのモジュー ルのインスタンスの場所にジャンプします。右クリックメニューに設 定されたサードパーティのエディタと「Add External Editor」が提供 されます(図 3-2)。「Add External Editor」を選択すると、「External Editor」の Options ダイアログボックスが表示され、サードパーティ のエディタを設定できます。
- Goto Module Definition: ソースファイル内のこのモジュールの定義の 場所にジャンプします。デフォルトでは、Gowin ソフトウェアが提供 するエディタで開きます。メニューバーの Tools > Options > External Editor でサードパーティのエディタが構成されていて、「Always Use External Editor」がチェックされている場合、Goto Module Definition は、デフォルトでサードパーティのエディタを使用してソースファイ ルを開きます。
- Goto Module Definition With…: ソースファイル内のこのモジュールの定義の場所にジャンプします。右クリックメニューに設定されたサードパーティのエディタと「Add External Editor」が提供されます(図 3-2)。「Add External Editor」を選択すると、「External Editor」のOptions ダイアログボックスが表示され、サードパーティのエディタを設定できます。
- Pack User Design:モジュールとそのサブモジュールを暗号化します。
- Set As Top Module: このモジュールをトップ・モジュールとして設定します。トップに設定されたモジュールには、現在のモジュールがトップ・モジュールであり、元の階層が変更されていないことを示すマーク「³」が追加されます。
- Clear Top Module:モジュールのトップ・モジュール設定をクリアします。

図 3-2 Hierarchy ウィンドウでの右クリックメニュー

Goto Module Instantiation		1
Goto Module Instantiation With	•	notepad
Goto Module Definition Goto Module Definition With	•	Add External Editor
Pack User Design		
Set As Top Module Clear Top Module		

プロジェクトファイルの hierarchy 分析中に error 情報がある場合 は、赤いフォントでマークされる「RTL Analysis Error」メッセージが Hierarchy ウィンドウの右上に表示されます。このメッセージをクリック すると、エラー情報の詳細を含むプロンプトボックスがポップアップ表示 されます。

3.6.2 リソース情報の表示

合成が完了すると、Hierarchy ウィンドウに現在のプロジェクトのリ ソース情報が自動的に表示されます(図 3-3)。モジュールが暗号化されて いる場合、そのリソース情報は表示されません。暗号化モジュールのリソ ース情報はその上位層モジュールにカウントされます。各モジュールのリ ソース使用量には、図 3-3 に示すように、2 つの数字があります。例え ば、モジュール alttop の LUT リソースの 2827(6)では、6 はモジュール自 体により使用される LUT の数、2827 はモジュールとそのサブモジュール により使用される LUT の数です。

図 3-3 Hierarchy ウィンドウでのリソース情報の表示

erarchy 🗗 🗙							
🔍 🖃 🛨 Update							
Unit	File	Register	LUT	ALU	BSRAM	SSRAM	Γ
∽ alttop	src\alttop.v	1804(0)	2827(6)	474(0)	9(0)	0 (0)	
rxuart(rcvuart)	src\rxuart.v	80(80)	93(93)	27(27)	0 (0)	0 (0)	
txuart(tcvuart)	src\txuart.v	43(43)	84(84)	0 (0)	0 (0)	0 (0)	
✓ altbusmaster(slavedbus)	src\altbusmaster.v	1681(76)	2644(161)	447(0)	9(0)	0 (0)	
deppbyte(deppdrive)	src\deppbyte.v	51(51)	10(10)	0 (0)	0 (0)	0 (0)	
> wbubus(busbdriver)	src\wbubus.v	660(20)	1017(11)	186(18)	6(0)	0 (0)	
icontrol(pic)	src\icontrol.v	27(27)	34(34)	0 (0)	0 (0)	0 (0)	
ziptimer(zipt_a)	src\ziptimer.v	65(65)	116(116)	0 (0)	0 (0)	0 (0)	
ziptimer(zipt_b)	src\ziptimer.v	33(33)	84(84)	0 (0)	0 (0)	0 (0)	
rtclight(thetime)	src\rtclight.v	153(153)	145(145)	90(90)	0 (0)	0 (0)	
wbpwmaudio(theaudio)	src\wbpwmaudio.v	66(66)	11(11)	44(44)	0 (0)	0 (0)	
spio(thespio)	src\spio.v	22(22)	11(11)	0 (0)	0 (0)	0 (0)	
wbgpio(thegpio)	src\wbgpio.v	49(49)	17(17)	16(16)	0 (0)	0 (0)	
 wbqspiflashp(flashmem) 	src\wbqspiflashp.v	272(156)	760(572)	30(24)	0 (0)	0 (0)	
llqspi(lldriver)	src\llqspi.v	116(116)	188(188)	6(6)	0 (0)	0 (0)	
✓ wbicape6(fpga_cfg)	src\wbicape6.v	107(68)	195(150)	15(15)	1(0)	0 (0)	
wbicapesimple(spartancfg)	src\wbicapesimple_G.v	39(39)	45(45)	0 (0)	1(1)	0 (0)	
wbscope(wbcfgscope)	src\wbscope.v	100(100)	83(83)	66(66)	2(2)	0 (0)	

3.6.3 ファイルの暗号化

プロジェクトが開いているとき、ユーザーが FPGA デザインのソース ファイルの全部または一部を暗号化したい場合は、Hierarchy ウィンドウ で暗号化するモジュールを右クリックし、右クリックメニューの「Pack User Design」をクリックして合成後の暗号化ファイルを生成できます。 「Pack User Design」ダイアログボックスを図 3-4 に示します。

🐳 Pack User Design				?	×
Create In:	D:\user-bak\Users\root\Desktop	>\8bit_counter\src	:\counter1_pa	ck	
Synthesis Tool:	GowinSynthesis 🔹	Language: Veri	log		•
Target Top Module:	counter1				
Source Files					
			Add File	Remove I	File
D:\user-bak\Users	<pre>s\root\Desktop\8bit_counter\src\</pre>	counter1.v			
Output					
			Pack	Sto	D

図 3-4 Pack User Design ダイアログボックス

Pack User Design ダイアログボックスの各構成項目の意味は次のとおりです。

- Create In:暗号化ファイルのターゲットパス(絶対パスのみをサポート)。デフォルトはプロジェクトパス¥src¥<topmodule_name>_packです。
- Language:ハードウェア記述言語を選択します。Verilog(デフォルト) および VHDL をサポートします。
- Target Top Module:暗号化するトップ・モジュール。デフォルトは、 Hierarchy ウィンドウで選択されたモジュールであり、それは変更で きます。
- Source Files: Hierarchy ウィンドウで選択したモジュールとサブモジュールのソースファイルを一覧表示します。
- Add File:暗号化する設計ファイルを追加します。
- Remove File:暗号化する必要のない設計ファイルを削除します。
- Output ウィンドウ:実行情報ウィンドウ。
- **Pack**:暗号化を実行します。
- **Stop**:暗号化を終了します。

暗号化が開始される時および暗号化が成功した時、関連する情報が Output ウィンドウに出力されます(図 3-5)。暗号化中にエラーがある場 合、エラー情報と暗号化失敗情報が Output ウィンドウに表示されます(図3-6)。

🐳 Pack User Design		?	×					
Create In:	D:\user-bak\Users\root\Desktop\8bit_counter\src\counter1_pa	ck						
Synthesis Tool:	GowinSynthesis		•					
Target Top Module:	counter1							
Source Files	Add File	Remove	File					
D:\user-bak\Users	D:\user-bak\Users\root\Desktop\8bit_counter\src\counter1.v							
Output			_					
Start packing user Finish packing use	r design. rr design.							
	Pack	Sto	р					

図 3-5 Pack User Design ダイアログボックス出力情報

図 3-6 Pack User Design ダイアログボックス暗号化失敗情報

🐳 Pack User Desigr	1	?	×			
Create In:	D:\user-bak\Users\root\Desktop\8bit_counter\src\counter1_pac	k				
Synthesis Tool:	GowinSynthesis Language: Verilog		•			
Target Top Module:	Target Top Module: counter1					
Source Files	Add File	Remove I	File			
D:\user-bak\User	D:\user-bak\Users\root\Desktop\8bit_counter\src\counter1.v					
Output						
bak\Users\root\D	esktop\8bit_counter\src\counter1.v":12)		^			
ERROR (EX3928) : bak\Users\root\D	Module 'counter1' is ignored due to previous errors("D:\user- esktop\8bit_counter\src\counter1.v":16)					
Run GowinSynthe	sis failed.		~			
	Pack	Sto	þ			

暗号化が完了すると、ターゲットパスの下に2つのファイルが生成 されます。Language として Verilog が選択された場合、生成されるファ イルは<topmodule_name> _gowin.vp と<topmodule_name> _sim.v で す。Language として VHDL が選択された場合、生成されたファイルは <topmodule_name> _gowin.vhdp および<topmodule_name> _sim.v のよ うになります。<topmodule_name> _gowin.vp および

<topmodule_name>_gowin.vhdp は、暗号化されたファイルであり、他の ユーザーに提供できます。<topmodule_name>_sim.v は、暗号化モジュ ールの機能シミュレーションに使用できるフラット化されたプレーンテキ ストネットリスト・ファイルです。

注記:

同じサブモジュールをインスタンス化する複数のモジュールがプロジェクトにある 場合、これらのモジュールのパック後に生成されたファイルにはサブモジュールの 定義が含まれます。生成されたファイルが同じプロジェクトで使用されている場 合、サブモジュールの重複定義エラーが報告されます。よって、この使用法は避け る必要があります。

3.6.4 検索機能

設計ファイルが多数ある場合は、Hierarchy ウィンドウの検索アイコ ンをクリックしてモジュール名またはファイル名で検索することができま す。検索には、ワイルドカードの使用、完全一致など、多くのオプション があります(図 3-7)。

Hierarchy	ē ×
🔍 🖃 🕂 Update	
Search: iicDs	(1 matches)
Unit	File Case sensitive
✓ alttop	src\altt Use wild cards
✓ altbusmaster(slavedbus)	src\altb Use regular expression
 wbubus(busbdriver) 	src\wbi Match exactly
 iicDs(jicDs) 	src\wbi 🗹 Match anywhere
dicDs(ykcDs)	src\wbi 🗸 Keep the children
KjcDs(zkcDs)	src\wbubus.v
xicDs(BkcDs)	src\wbubus.v
gjcDs(CkcDs)	src\wbubus.v
licDs(DkcDs)	src\wbubus.v
EkcDs(FkcDs)	src\wbubus.v
<	>
Process Hierarchy	÷

図 3-7 Hierarchy ウィンドウの検索機能

3.7 ソースファイル編集エリア

基本的なファイル編集と検索機能を提供します。

新規作成または開いたファイル、合成後に生成したファイル、Place & Route 後に生成したファイルがいずれもテキスト編集エリアに表示されます。このほか、「Start Page」及びプロジェクトの「Design Summary」も同様にテキスト編集エリアに表示されます。

ファイルがテキスト編集エリアに表示され、外部でファイルの変更操 作を行った場合、テキスト編集エリアで「File Changed」ダイアログボッ クスがポップアップします。「Reload」を選択してこのファイルを再ロー ドします。

「File」メニューの「Close」オプション、またはテキスト編集エリ アの現在表示するファイル名の右側の × をクリックすると、テキスト編 集エリア内の現在表示中のファイルが終了します。

「File」メニューの「Close All」項目をクリックすると、テキスト編 集エリアに表示中のすべてのファイルが終了します。

ファイルを開いた後、ショートカットキーCtrl+F を使用するか、ツー ルバーの Find & Replace をクリックして Find & Replace ダイアログボッ クスを開くことができます。ダイアログボックスの Find All オプションを 使用すると、次の 3 つの検索範囲を選択できます: Current File、Open Files、および Current Project(図 3-8)。Find All をクリックすると、 Search Result ウィンドウがソフトウェアの下にポップアップし、一致し た項目がハイライト表示され、一致した項目の総数が最初の行の最後に表 示されます(図 3-9)。

図 3-8 Find & Replace ダイアログボックス

🐝 Find & Replace		?	×
Quick Find Find All Replace			
Find What: cout	,	Find All	
Scope: Current File Open Files Current Project 			
Options			
Use Regular Expressions			
U Whole Word Only			
Case Sensitive			
Search Backward			
☑ Wrap Around			
	[Close	;

図 3-9 Search Result ウィンドウ

Search H	lesult						₽×
✓ D:	\idePrj\8b	it_counter\	src\counter	1.v (3))		
	3	module o	ounter1(out	t, <mark>cout</mark>	, data, load, c	in, clk);	
	5	output <mark>co</mark>	out;				
	22	assign <mark>co</mark>	<mark>ut</mark> = &out &	k cin;			
Consol	e Mess	age Sea	rch Result				
						ln: 17	Col: 1

3.8 インフォメーション出力エリア

ソフトウェアの実行過程での処理インフォメーションを表示します。 タブを手動で切り替えて別のタイプの出力情報を見ることもできます。

- Console ページ: Tcl コマンド、警告メッセージ、エラーメッセージ があります。
- Message ページ:Note メッセージ、警告メッセージ、エラーメッセージがあります。

ページの情報を消去するには、Console ウィンドウで右クリックして 「Clear」を選択します。」Message」ウィンドウには、Note、Warning、 および Error の3つのサブオプションがあり、図3-10に示すように、各 サブオプションのタブには、対応する各メッセージの数が表示されます。 現在のページの情報を消去するには、Message ウィンドウで右クリック して「Clear」を選択します。

図 3-10 インフォメーション出力エリア

Message		₽×
(0)	<u>▲</u> (3) ① (0)	
🔺 WARN	(CT1135) : "D:\idePrj\8bit_counter\src\8bit_counter.cst":8 Can't find object named 'dqsin'	
🔺 warn	(CT1135) : "D:\idePrj\8bit_counter\src\8bit_counter.cst":9 Can't find object named 'd'	
🔺 warn	<pre>(CT1135) : "D:\idePrj\8bit_counter\src\8bit_counter.cst":10 Can't find object named 'dqs_inst'</pre>	
Console	Message	
	In: 17 Col:	1

Error または Warning メッセージを選択し、右クリックして「Help」 を選択するか、ショートカットキー「F1」を押すると、Error または Warning に関する「GOWIN Help」へルプドキュメントが表示されます。 Error または Warning については、ドキュメントで詳しく説明されます。 一般的な Error または Warning メッセージの一部を表 3-1 に示します。へ ルプドキュメントは、メニューバーの Help > View Help を選択して表示 できます。

表 3-1 一般的な Warning または Error メッセージ

名称	コード	説明
Warning	WARN (PA1002): <file>:<line> Invalid parameterized value <value>(<parameter>) specified for instance <instancename></instancename></parameter></value></line></file>	指定された場所のデバ イスには、間違ったパ ラメータ値が構成され ています。
	WARN (PA1008): <file>:<line> Object <name> is already defined</name></line></file>	ネットまたはポートの 重複定義があります。
	WARN (PA1001) : Dangling net <netname>(source:<instancename>) in module <modulename> has no destination</modulename></instancename></netname>	指定されたモジュール のネットが対象に接続 されていません。
	WARN (CT1098) : <file>:<line> Group name <name> is already defined</name></line></file>	制約グループの重複定

名称	ゴード	説明
		義があります。
	WARN (CT1101) : <file>:<line> Location column <number> is out of chip range(<maxcolumn>)</maxcolumn></number></line></file>	制約位置情報の列がチ ップの範囲外です。
	ERROR (PA2000): <file>:<line> Syntax error near token <name></name></line></file>	構文エラーがありま す。例えば:
	ERROR (PA2001): <file>:<line> Module <modulename> is already defined</modulename></line></file>	モジュールの重複定義 があります。例えば:
Error	ERROR (PA2017): The number(<value>) of <insttype> in the design exceeds the resource limit(<maxvalue>) of current device</maxvalue></insttype></value>	モジュール数が制限を 超えています。
	ERROR (PA2025): No <insttype> resource in current device</insttype>	サポートされないデバ イスがあります。
	ERROR (PA2054): <file>:<line> <name> is already declared</name></line></file>	デバイスの名前が重複 しています。

Console ページの下部には、Tcl コマンド編集ウィンドウがありま す。ウィンドウに Tcl コマンドを入力して Enter キーを押してコマンドを 実行できます(図 3-11)。Tcl コマンドの使用の詳細については、このドキ ュメントの<u>8 Tcl コマンドの説明</u>を参照してください。

図 3-11 Tcl コマンド編集ウィンドウ

Console		₽×
Wed Jun 03 18:10:56 2020		~
% run_pnr		
invalid command name "run_pnr"		
% run pnr		
Reading netlist file: "D:\idePrj\8bit_counter\impl\gwsynthesis\8bit_counter.vg"		
Parsing netlist file "D:\idePrj\8bit_counter\impl\gwsynthesis\8bit_counter.vg" completed		~
%run pnr		
Console Message		
	ln: 17	Col: 1

4Gowin ソフトウェアの使用

Gowin ソフトウェアは、GUI モードとコマンド・ライン・モードを サポートしています。コマンド・ライン・モードの使用については、8 Tcl コマンドの説明を参照してください。

Windows 10 での Gowin ソフトウェアを例にソフトウェアの使用方法 を紹介します。

4.1 プロジェクトの新規作成

 「File > New…」をクリックして「New」ダイアログを開きます(図 4-1)。

Wew ?	×
✓ Projects	^
属 FPGA Design Project	
✓ Files	
📘 Verilog File	
📘 VHDL File	
📑 Timing Constraints File	~
Create a FPGA design project. You will be able to add or create RTL sources, run synth- place & route, and program your device.	≥sis,
OK Cana	el

図 4-1 プロジェクトの新規作成

注記:

または、以下の3つの方法を使用して「New」ダイアログボックスを開きます。

- ショートカットキーCtrl+N を使用します。
- ツールバーの「New File or Project」アイコンをクリックします。
- Start Page ウィンドウの「Quick Start>New Project」をクリックします。

 デフォルトで「FPGA Design Project」が選択されています。[OK]を クリックすると「Project Wizard」ダイアログボックスがポップアッ プします(図 4-2)。

```
図 4-2 プロジェクト新規作成ウィザード
```

关 Project Wizard		×			
Project Name Select Device Summary	Project Name Enter a name for your project, and specify a directory wher the project will be stored. The directory will be created i doesn't exist.				
	Name: Create in:	fpga_project_6 D:\idePrj Use as default project location			
		Next > Cancel			

- 3. プロジェクト名とパスを作成します(図 4-2)。
 - a) 「Name」テキストボックスにプロジェクト名を入力します。
 - b) 「____」をクリックしてプロジェクトパスを選択します。

「Use as default project location」を選択すると、プロジェクトパス がデフォルトのパスとして設定され、次に新しいプロジェクトを作成 するときに、デフォルトでこのパスに作成されます。

注記:

- Windows と Linux ではファイルパスの長さが制限されています。Windows システムのパスの長さは 260 文字に制限されており、Linux システムのパスの長さは 4096 文字に制限されています。パスの長さが制限を超えた場合、パスの削除またはコピーは失敗します。
- Linux と異なり、Windows のパスの区切り文字は「¥」(例えば: E:¥Gowin¥ide) です。
- 「Next」をクリックして、FPGAのデバイス情報を設定します。5つのフィルタオプション(Series、Device、Package、Speed、および Device Version)があります。また、検索機能も利用可能です。
 - Series でシリーズをフィルタリングします
 - Device でデバイスをフィルタリングします
 - Package でパッケージタイプをフィルタリングします
 - Speed でスピードグレードをフィルタリングします
 - Device Version でデバイスのバージョンをフィルタリングします
 - 「Part Number」でチップの型番を選択します。また、この列で は選択したデバイスの詳しいリソース情報が表示されます。
 Device Version がないデバイスの場合、Device Version 列は空列 で表示され、デバイスの Device Version は逆順に表示されます(図)

4-3)_°

図 4-3 FPGA デバイスの情報の設定

Project Name	Select Device							
Select Device	Specify a target device for your	r project						
Summary	Filter							
	Series:	Any v		Package: Any				\sim
	Device:	Any	~	Speed: Any			~	
	Device Version: *no version number is initial version	Any	~					
	Search:		(0 matches)					
	Part Number	Device	Device Ve	rsion I	Package	Speed	Voltage	1
	GW5AT-LV60GW369S0ES	GW5AT-60	ES	GW	36950	ES	LV	
	GW5AT-LV60GW369ES	GW5AT-60	ES	GW	369	ES	LV	
	GW5AT-LV60UG225ES	GW5AT-60	ES	UB	GA225	ES	LV	
	GW1NR-LV4QN88C7/I6	GW1NR-4	D	QFI	N88	C7/I6	LV	
		GW1NR-4	D	QFI	N88	C6/15	LV	
	GW1NR-LV4QN88C6/I5							
	GW1NR-LV4QN88C6/I5 GW1NR-UV4QN88C7/I6	GW1NR-4	D	QFI	88/	C7/I6	UV	

 「Next」をクリックし、「Summary」ウィンドウで新規作成された FPGA プロジェクトのプロジェクト情報とデバイス情報を確認します (図 4-4)。

図 4-4 プロジェクト情報

🐳 Project Wizard		×
Froject Name Select Device ➡ Summary	<pre>Summary Project Name: fpga_project_6 Directory: D:\idePrj Source Directory: D:\idePrj\fpga_project_6\src Implementation Directory: D:\idePrj\fpga_project_6\impl Device Part Number: GWIN-LV4PG256C5/I4 Series: GWIN Device: GWIN-4 Package: PBGA256 Speed: C5/I4</pre>	
	< Eack Finish Cancel	

6. 「Finish」をクリックしてプロジェクト作成を完了します。

4.2 プロジェクトを開く

ユーザーは、Gowin ソフトウェアの GUI から、作成済みの Gowin ソフトウェア・プロジェクトを開くことができます。プロジェクトを開くには、次の5つの方法があります。

ツールバーから開く

- 1. ツールバーの「 「 アイコンをクリックして、「Open File」 ダイアロ グボックスを開くことができます。
- 2. プロジェクトファイル(*.gprj)」を選択し、「Open」をクリックしてプ ロジェクトを開きます。

図 4-5 ファイルを開く

🐳 Open File						×
← → × ↑ 🔤 « test_fife	> test_fifo	~ Ū	Search	test_fifo		٩
Organize 👻 New folder						?
🕹 Downloads 🔷	Name	Date mo	dified	Туре	Size	
b Music	impl	10/9/202	1 15:48	File folder		
Pictures	src	10/9/202	1 14:19	File folder		
Videos	关 test_fifo.gprj	10/9/202	1 14:19	GPRJ File		1 KB
🏪 Local Disk (C:)	test_fifo.gprj.user	10/9/202	1 15:50	USER File		3 KB
Tools (D:)						
👝 fpgaProject (E:)						
🔜 references (F:)						
🕳 myTask (G:)						
Network						
~ <	·					^
File <u>n</u> ame:		~	All File	s (*) (*.*)		\sim
			<u>0</u>	pen	Cancel	

メニューバーから開く

- 1. メニューで「File>Open …」を選択し、「Open File」ダイアログを開きます(図 4-5)。
- 2. プロジェクトファイル(*.gprj)」を選択し、「Open」をクリックしてプ ロジェクトを開きます。

Start Page から開く

- 1. 「Start Page」ページで「^{we minut}」をクリックして「Open Project」ダ イアログを開きます。
- 2. プロジェクトファイル(*.gprj)」を選択し、「Open」をクリックしてプ ロジェクトを開きます。

Recent Projects から開く

メニューバーで「File>Recent Projects」を選択し、開きたいプロジェ クトをクリックします。

注記:

- 「Start Page>Recent Projects」リストで開きたいプロジェクトを選択すること もできます。
- Recent Projects は最近開いたプロジェクトのリスト(最大 10 個のプロジェクト) です。
そのプロジェクトが削除済されている場合、「Open Project」プロンプトがポッ プアップします。

プロジェクトファイルで開く

プロジェクトファイル(* .gprj)をダブルクリックしてプロジェクトを 開きます。

4.3 プロジェクトの編集

プロジェクトを新規作成または開いた後、プロジェクト管理ウィンド ウで FPGA プロジェクトデバイス情報や関連ファイルなどを編集できま す(図 4-6)。

プロジェクト管理エリアには、主に次の情報が含まれています。

- FPGA プロジェクトのパス情報。
- 使用されるデバイスの型番。
- ユーザーデザインファイル (Source Files)、制約ファイル、構成ファ イルなど、現在のプロジェクトに含まれるファイル情報。その中で、 制約ファイルには、物理制約ファイル (.cst)、タイミング制約ファイ ル (.sdc) が含まれ、構成ファイルには、GAO 構成ファイル (.gao、.rao)、消費電力解析構成ファイル (.gpa)、仮想入力出力の 構成ファイル (.gvio) などが含まれます。

図 4-6 プロジェクトファイル・ウィンドウ

4.3.1 プロジェクトデバイスの編集

現在使用されているデバイスの型番は、プロジェクト管理エリアで 変更できます。

 図 4-6 に示すように、「GW1N-LV4LQ144C6/I5」をダブルクリックして「Select Device」ダイアログボックスを開くか、メニューバーの Project > Set Device を選択します(図 4-7)。 Select Device」ダイアログボックスで FPGA デバイス情報を設定 し、「Part Number」欄で型番を選択することで、現在のプロジェクト で使用されているデバイスを編集します。「Part Number」欄には、デ バイスのバージョン、パッケージ情報、スピードグレード、コア電 圧、チップに含まれる IO/LUT/FF/SSRAM/BSRAM/User Flash/DSP/PLL リソースの数など、選択したチップのデバイスの詳細 情報が表示されます。

注記:

空の Device Version(デバイスのバージョン)は、初期バージョンであることを意味します。チップの date code の末尾には、デバイスのバージョンを表す文字があります。「Part Number」欄で選択されたデバイスのバージョンは、使用しているデバイスのバージョンと一致している必要があります。

図 4-7 チップの型番の構成

🐳 Select Device							? ×
Filter							
Series:	GW1N	~	Package:	Any			~
Device:	GW1N-4	~	Speed:	Any			~
Device Version: *no version number is initial version		~					
Search:		(0 matches)					
Part Number	Device	Device Version	Package	Speed	Voltage	ю	LUT ^
GW1N-LV4PG256C6/I5	GW1N-4		PBGA256	C6/I5	LV	208	4608
GW1N-LV4MG160C6/I5	GW1N-4		MBGA160	C6/I5	LV	132	4608
GW1N-LV4LQ144C6/I5	GW1N-4		LQFP144	C6/I5	LV	120	4608
GW1N-LV4LQ100C5/I4	GW1N-4		LQFP100	C5/I4	LV	80	4608
GW1N-UV4PG256C6/I5	GW1N-4		PBGA256	C6/I5	UV	208	4608
GW1N-UV4MG160C6/I5	GW1N-4		MBGA160	C6/I5	UV	132	4608
GW1N-LV4LQ100C6/I5	GW1N-4		LQFP100	C6/I5	LV	80	4608
 CUMPE IN (0007005.04) CUMPE IN (0007005.04) 	CIA/ANI A		W// COD70	05.04	117	50	******
					0	к	Cancel

4.3.2 プロジェクトファイルの編集

プロジェクトに追加する必要があるファイルには、ユーザーRTL 設計 ファイル(Source Files)、制約ファイル、構成ファイルが含まれます。プ ロジェクトに必要なファイルを編集する方法を紹介します。

設計ファイルと制約ファイルの新規作成

- ツールバーの「□」をクリックするか、メニューバーの File > 「New...」を選択します。
- 2. 新規作成したいファイルを選択します(図 4-8)。

図 4-8 ファイル新規作成ダイアログボックス

 例えば、Verilog File の新規作成の場合、「Verilog File」を選択し、 Verilog File 新規作成ダイアログボックスを開きます。ファイル拡張形 式を選択できます(図 4-9)。「Add to current project」はデフォルトでチ ェックされています。つまり、新しく作成された設計ファイルはデフ ォルトで現在のプロジェクトに追加されます。

図 4-9 Verilog File の新規作成

🐳 New Verilog file	?	×
Name: Enter a name	.v	•
Create in: D:\gowin_project\daily_test\src	.v .sv	
Add to current project	.vo .vp .vh	
ОК	.vg	

4. ファイル名を入力し、「OK」をクリックします。

構成ファイルの新規作成

- 1. ツールバーの「□」をクリックするか、メニューバーの File > 「New...」を選択します(図 4-8)。
- 図 4-8 で、新規作成したい構成ファイルの種類を選択します。例え ば、消費電力解析構成ファイルの新規作成の場合、「GPA Config File」 を選択して New GPA Config File ダイアログボックスを開きます。図 4-10 に示すように、ファイル名を入力し、「OK」をクリックすると、 新しい GPA 構成ファイルが自動的にプロジェクト管理エリアに追加さ れます。
- 3. プロジェクト管理エイラで構成ファイルをダブルクリックして、編集 用の空の構成ファイルをウィンドウの形式で開きます(図 4-11)。

🗞 New GPA Config File		?	×
ame: Enter a name			
reate in: [D:\idePrj\8bit_counter\src]		Browse	
	OK	Canc	el
4-11 GPA 構成ファイルウィンドウ			
eneral Setting Rate Setting Clock Setting			_
Operating Conditions			
Grade: COMMERCIAL Process: TYPICAL			
Environment			
Ambient Temperature: 25.000°C			
Heat Sink			
None Low Profile Medium Profile High Profile Custom			
Air-flow: 0 V (LFM)			
Custom Theta SA: 25.000°C/W			
Board Thermal Model			
None Custom Typical			
Board Temperature: 25.000°C ▲ (-40°C-100°C)			
Custom Theta JB: 25.000°C/W			
14-le			
Voitage			
VCC: 1.000V			
VCCV 2 500V 1			

図 4-10 構成ファイル新規作成ダイアログボックス

プロジェクトファイルの追加

- 図 4-12 に示すように、プロジェクト管理エリアの空白で右クリックし、「Add Files…」を選択し、「Select Files」ダイアログボックスを開きます。
- プロジェクトファイルは、同時に複数、または1つのファイルを選択 できます。選択後、ユーザーデザインファイルの追加が完了します。 追加後、ソフトウェアはプロジェクトファイル管理エリアのファイル を自動的に分類します。追加されたファイルがRTL設計ンファイル、 ネットリスト・ファイル、制約ファイル、GPA構成ファイル、GAO 構成ファイルでない場合、ファイル分類「Other Files」がプロジェク ト管理エリアに追加されます。

図 4-12 Design ウィンドウの右クリックメニュー

Design		6	×
4 🧰 8bit	_counter -	[D:\gowin_project\8]	oi t•
(iii)	GW2A-LV18	PG484C8/I7	
۱ 📂 ۵	/erilog Files	;	
1	src\top.v	/	
1 📋	New File		
	dd Files		
Hi er ar chy	Design	Process	

プロジェクトファイルの変更

図 4-13 に示すように、ファイルを開くには以下の2つの方法があります。

- プロジェクト管理エリアでファイルをクリックすると、そのファイル がソースファイル編集エリアに表示されます。
- 2. ファイルを右クリックし、「Open」をクリックします。

凶 4	-13 フロシ	エクトン	アイル編集	メニュー	
🐝 GOWI	N FPGA Designer - [Start Pag	c]			– 🗆 🗙
💡 <u>F</u> ile <u>E</u>	dit <u>P</u> roject <u>T</u> ools <u>W</u> indo	w <u>H</u> elp			- 8 1
📄 📂		- D- D- H 🛛 🛤	🚴 👪 1-1 💐 🏭 🎜		
Design		r × Recent Project	ts:		
🗸 🦲 da	ily_test - [D:\gowin_project\da	iily_t	Quick Start		
	GW1N-LV4PG256C7/I6 Verilog Files				
			New Project	Open Project	Open Example Project
v 📂	Open				
	Open With	•	Tools		
~ 📂	Open Terminal Here Open Containing Fold	er			01
	Remove	Del	FloorPlanner	Timing Constraints Editor	Programmer
	File Properties Enable Disable		User Manuals		
	New File				
	Add Files		Manual for Li	tleBee Manual for Ar	ora
			¢		>
Design	Process Hierarchy	9	Start Page	×	

2 7 ----

ユーザーがメニューバーの Tools > Options でサードパーティのテキ スト編集ソフトウェアを設定している場合は、「Open With…」を選択し て、サードパーティのテキスト編集ソフトウェアで設計ファイルを開くこ とができます。「Add External Editor」を選択した場合、ユーザーはサー ドパーティのエディタを追加できます(図 4-14)。「Always Use External Editor」をチェックすると、常にサードパーティのエディタで設計ファイ ルを開くようになります。右クリックメニューから「Open Containing Folder」を選択すると、ファイルが所在するフォルダが開きます。「Open Terminal Here」を選択すると、コマンド・ラインの実行ウィンドウが開 き、ユーザーはコマンド・ライン・モードで実行できます。

ユーザーが外部のエディタを使用し、Gowin ソフトウェア編集エリア で開いたファイルを変更及び保存すると、Gowin ソフトウェアはプロジ ェクトファイル変更通知をポップアップします。

ユーザーが編集後に保存していないファイルを閉じようとすると、 Gowin ソフトウェアはプロジェクトファイル保存通知をポップアップし ます。

図 4-14 外部エディタ

🐝 Options				×
	External Editor			
🚝 Environment	External Editor			
Text Editor	Always Use External Editor			
Kternal Editor	Name	Program	Arguments	Add
	📓 notepad	D:/Program Files/Notep	% f	Remove
				Make Default
[*]items request restart	t program		OK Canc	el Apply

変更されたプロジェクトファイルを保存しないまま Synthesize また は Place&Route を実行する場合は、「Save Modified Files」 プロンプトボ ックスがポップアップします(図 4-15)。

図 4-15 Save Modified Files ダイアログボックス

😻 Save Modified Files		?	\times
The following files have been modified, Please	e select the files	to save.	
Select the files to save			
D:\test prj\8bit_counter\src\counter1.v			
			_
	Select All	Deselect	t All
	OK	Canad	-1
	UK	Cance	51 51

「OK」をクリックすると、ファイルが保存され、実行したいプロセ スが実行されます。「Cancel」をクリックすると、ファイルは保存され ず、Synthesize や Place&Route も実行されません。

プロジェクトファイルの削除

- 1. プロジェクト管理エリアのファイルを選択します。
- 右クリックして「Remove」を選択するか、キーボードの「Delete」キーを直接押すと、「Remove Files」ダイアログボックスが表示されます。「Remove Permanently on Disk」をチェックすると、ファイルは現在のプロジェクトから削除され、ディスクから削除されます。それ以外の場合、ファイルは現在のプロジェクトからのみ削除されます。

プロジェクトファイルの属性の編集

プロジェクト管理エリアでファイルを右クリックし、右クリックメニ ューから「File Properties」を選択すると、図 4-16 に示すように、ファイ ルのファイル属性ダイアログボックスが表示されます。ダイアログボック スには、ファイルのパス情報、変更時間、Type、Library 情報が含まれま す。Type ドロップダウンメニューでは、ファイルのタイプ情報を編集す ることができます。OK をクリックすると、Design ウィンドウで選択さ れたタイプに自動的に移動します。Library は、VHDL ファイルを合成す るためのコンパイルライブラリを指定するために使用されます。デフォル トは work です。複数のライブラリがある場合は、それらを「;」で区切る 必要があります。

-			
🐳 File Pro	perties	?	\times
Path:	D:\gowin_project\daily_test\src\top.v		
Modified:	2023-10-20 13:54:55		
Туре:	Verilog		•
Library:	work		
	ОК	Cano	el

図 4-16 プロジェクトファイル属性ダイアログボックス

複数の Verilog ファイルまたは複数の VHDL ファイルが選択されてい る場合、「File Properties」ダイアログボックスにパス情報と変更時間は表 示されません。Verilog ファイルと VHDL ファイルの両方が選択されてい る場合、「File Properties」ダイアログボックスにパス情報、変更時間、お よびタイプは表示されません。

Libraryの使用法は次のとおりです。

- デザインのトップレベル(または上位レベル)エンティティに最下位 エンティティの component がある場合、最下位エンティティがどの Library に属しているかを気にする必要はなく、デフォルト値 work を 使用できます。
- デザインのトップレベル(または上位レベル)エンティティが最下位 エンティティ(uut1: entity mb.sub1 など)を「uut1: entity ライブラ リ名.最下位エンティティ名」の形式で呼び出す場合、最下位のエンテ ィティがある vhdl ファイルの library は、ライブラリ名(mb など)で ある必要があります。
- パッケージ内に最下位エンティティの component がある場合、トッ プレベル(または上位レベル)のエンティティがパッケージを介して 最下位エンティティを呼び出すとき、最下位エンティティがどの library に属するかを気にする必要なく、デフォルト値 work を使用で きます。
- パッケージ内に最下位エンティティの component がある場合、最上位(または上位)のエンティティは、「uut:パッケージが属するライブラリ名.パッケージ名.最下位エンティティ名」の形式で最下位エン

ティティ(uut1:work.pack.sub1など)を呼び出す時、最下位エンテ ィティがどの library に属するかを気にする必要なく、デフォルト値 work を使用できます。

プロジェクトファイルのイネーブル

ユーザーはプロジェクト管理エリアの任意のファイルを右クリックして[Enable]と[Disable]のオプションを確認できます(図 4-13)。イネーブル されたファイルはプロジェクトのコンパイルプロセスに参加します。

- 右クリックで Enable/ Disable を設定します(個別のファイルの設定と 複数ファイルの一括設定を含む)。
- 2. 複数の制約ファイルまたは構成ファイルの場合、1つのファイルのみ を Enable 状態にすることができます。同じ種類の新しいファイルを作 成または追加すると、前のファイルは無効になります。

4.3.3 プロジェクトの構成

プロジェクト管理エリアで「Synthesize」または「Place & Route」 を右クリックして「Configuration」を選択し、プロジェクト構成ダイアロ グボックスを開きます(図 4-17)。

図 4-17 プロジェクトの構成オプション

🐳 Configuration	>	(
	General	
 Global General Constraints Synthesize 	Output Base Name:	
General ✓ Place & Route General Voltage Place Route Dual-Purpose Pin Unused Pin ✓ BitStream General sysControl Feature sysControl		
	OK Cancel Apply	

図 4-17 に示すように、構成可能なプロジェクトオプションには、 「Global」、「Synthesize」、「Place & Route」、および「BitStream」が含 まれます。構成可能な各オプションの詳細は次のとおりです。

Global

Global オプションには、General と Constraints が含まれています。

General

General オプションでは、出力ファイルの基本名を指定できます。デ フォルトは現在のプロジェクトの名前です(図 4-18)。 図 4-18 General オプション

Configuration	
	General
✓ Global	Output Pace Name: tect
General	Output base Marile. Lesi
Constraints	
✓ Synthesize	
General	
✓ Place & Route	
General	
Voltage	
Place	
Route	
Dual-Purpose Pin	
Unused Pin	
✓ BitStream	
General	
sysControl	
Feature sysControl	
	OK Cancel Apply

Constraints

Constraints オプションの構成を図 4-19 に示します。このオプション を使用して、ユーザーデザインのグローバル・クロックの周波数を設定で きます。ただし、クロック周波数がタイミング制約で指定されている場合 は、タイミング制約における周波数値が優先されます。デフォルトでは、 50MHz(LittleBee ファミリー)または 100MHz(Arora ファミリー)です。

図 4-19 Frequency(MHz)オプション

🐝 Configu	ration		×
		Constraints	
✓ Global		Frequency(MHz) Pefault Custom 50,000	
Ger	neral	requeres (initiz) @ Denaute () easterni ()	
Cor	nstraints		
✓ Synthes	size		
Ger	neral		
✓ Place 8	Route		
Ger	neral		
Vol	tage		
Plac	:e		
Rou	ite		
Dua	al-Purpose Pin		
Unu	ised Pin		
✓ BitStream	am		
Ger	neral		
syst	Control		
Fea	ture sysControl		
		OK Cancel Apply	

Synthesize

General

Synthesize の General オプションを図 4-20 に示します。合成ツール として GowinSynthesis が提供されます。また、合成オプションの構成 がサポートされます。一部のオプションの上にマウスを置くとその説明 が表示されます。

Configuration		>
Y Global	Synthesize General	
 Global General Constraints Synthesize General Voltage Place Route Dual-Purpose Pin Unused Pin Incremental PnR BitStream General sysControl Feature sysControl 	Synthesis Tool: GowinSynthesis Top Module/Entity: Include Path: TclPre GowinSynthesis Verilog Language: Verilog 2001 VHDL Language: VHDL 1993 UHDL 1993 Looplimit: 2000 Show All Warnings Disable Insert Pad Ram R/W Check	

図 4-20 GowinSynthesis のパラメータの構成

図 4-20 の各パラメータの詳細は以下のとおりです:

- Top Module/Entity:トップ・モジュールを指定します。
- Include Path: インクルードパスを指定します。
- TclPre:ソフトウェアの自動バージョン管理ファイルを指定します。 合成するたびにバージョン番号とバージョン日付が自動的に変更され るため、デザインのバージョンは、バージョン番号により確認するこ とができます。
- Verilog Language : verilog 言語を指定します。System Verilog 2017、 Verilog 2001(デフォルト)、および Verilog 95 をサポートします。
- VHDL Language: VHDL 言語を指定します。VHDL 1993(デフォルト)、VHDL 2008、および VHDL 2019 をサポートします。このオプションは、現在のプロジェクトに VHDL 形式の設計ファイルが含まれていることが検出された場合にのみ画面に表示されます。
- Looplimit: RTL のデフォルトのコンパイラのループ制限値で、デフォルト値は 2000 です。
- Show All Warnings: このオプションをチェックすると、合成プロセス中にすべての警告情報が出力されます。デフォルトではチェックされていません。
- Disable Insert Pad:ネットリストに I/O Buffer を挿入するかどうかを 設定します。デフォルトではチェックされていません。
- Ram R/W Check: RAM に読み出しまたは書き込みの競合がある場合、このオプションをチェックすると、RAM の周りに、シミュレーションの不一致を防ぐためのバイパスロジックが挿入されます。デフォルトではチェックされていません。

注記:

オプション構成の詳細については、『GowinSynthesis ユーザーガイド(<u>SUG550</u>)』を 参照してください。

Place & Route

Place & Route オプションには、General、Voltage、Place、Route、 Dual-Purpose、および Unused Pin があります。各オプションの説明を表 4-1 に示します。

オプション	説明
General	配置配線時の一般的なパラメータの構成に使用されま す。
Voltage	VCCX を設定するために使用されます。
Place	配置パラメータの構成に使用されます。
Route	配線パラメータの構成に使用されます。
Dual-Purpose Pin	選択したデバイスのパッケージ方法に対応する I/O 情報 の構成、つまり多重化ピンの構成に使用されます。
Unused Pin	未使用 GPIO の IO 属性を設定します。

表 4-1 Place & Route 各オプションの説明

「Reset all to default」をクリックすると、現在の構成はすべてデフォルトの値に戻ります。

General

General オプションの構成を図 4-21 に示します。

図 4-21 配置配線オプションの構成

🐳 Configuration		×
	Place & Route	
✓ Global General	Category: All	Reset all to default
Constraints	Label	Value
✓ Synthesize	Generate SDF File	False
General	Generate Post-Place File	False
✓ Place & Route	Generate Post-PnR Verilog Simulation Model File	False
General	Generate Post-PnR VHDL Simulation Model File	False
Voltage	Generate Plain Text Timing Report	False
Place	Promote Physical Constraint Warning to Error	True
Route Dual-Purpose Pin	Show All Warnings	False
Unused Pin	Report Auto-Placed IO Information	False
✓ BitStream General sysControl		
Feature sysControl	Generate standard delay format file. Default: *.sdf	
	ОКС	ancel Apply

図 4-21 の各オプションの詳細は以下のとおりです:

- Generate SDF File: 拡張子が.sdfの標準遅延フォーマットファイルを 生成します。これは、配置配線後のネットリスト・タイミングシミュ レーションに使用されます。デフォルトは False です。詳しくは、こ のドキュメントの <u>7 シミュレーションファイル</u>を参照してくださ い。
- Generate IBIS File: 拡張子が.ibs の入力/出力バッファ情報指定ファ イルを生成します。デフォルトは False です。
- Generate Post-Place File: BSRAM 配置情報のみを含む、拡張子が.pospのファイルを生成します。デフォルトは Flase です。
- Generate Post-PNR Verilog Simulation Model File: Verilog 言語のタ イミングシミュレーション用のタイミングシミュレーション・モデル ファイル(拡張子は.vo)を生成します。デフォルトは False です。
- Generate Post-PNR VHDL Simulation Model File: VHDL 言語のタイ ミングシミュレーション用のタイミングシミュレーション・モデルフ ァイル(拡張子は.vho)を生成します。デフォルトは False です。
- Generate Plain Text Timing Report: 拡張子が.tr のテキスト形式でタ イミングレポートを生成します。デフォルトは False です。
- Promote Physical Constraint Warning to Error:物理制約の警告をエラーに昇格させます。デフォルトは True です。
- Show All Warnings: 配置配線中にすべての警告情報を出力します。
 デフォルトは False です。
- Report Auto-Placed IO Information:自動的に配置される I/O の位置情報を報告します。デフォルトは False です。

Voltage

Voltage オプションを図 4-23 に示します。このオプションでは、電圧 VCC と VCCX を設定することができます。設定可能な VCC と VCCX の 値は、デバイスによって異なります。「Reset all to default」をクリックす ると、設定された VCC と VCCX がデフォルトの値に戻ります。

注記:

- VCC の設定は、GW1NZ-1/GW1NZ-2 デバイスの遅延データに影響します。
- VCCX の設定は、消費電力の計算結果に影響します。

$\square = 22 \vee 0 \square age \land \land \land \land \exists \land \lor 0 \square age$	馷	韝
--	---	---

🐳 Configuration		×
	Voltage	
 ✓ Global General Constraints ✓ Synthesize 	VCC: 0.9V ~ VCCX: 3.3V ~	Reset all to default
General ❤ Place & Route		
General Voltage		
Place Route		
Dual-Purpose Pin Unused Pin		
✓ BitStream General		
sysControl Feature sysControl		
	ОК	Cancel Apply

Place

Place オプションを図 4-23 に示します。

図 4-23 配置オプションの構成

🐳 Configuration		×
	Place	
✓ Global General Constraints	Category: All	Reset all to default Value
 ✓ Synthesize General 	Place input registers to IOB Place output registers to IOB	True True
✓ Place & Route General Voltage	Place inout registers to IOB Place Option	True 0
Place Route Dual-Purpose Pin Unused Pin	Replicate Resources	False
 BITSTFeam General sysControl Feature sysControl 	Place input registers to IOB in implement.	
	ОК	Cancel Apply

図 4-23 の各オプションの詳細は以下のとおりです:

- Place input register to IOB: 入力バッファに接続されるレジスタを IOB に配置します。GW5A(S)(T)-138/GW5AT-75 デバイスの場合、デ フォルトは False で、その他の場合、デフォルトは True です。
- Place output register to IOB: 出力/トライステートバッファに接続さ

れるレジスタを IOB に配置します。GW5A(S)(T)-138 デバイスの場合、デフォルトは False で、その他の場合、デフォルトは True です。

- Place inout register to IOB: 双方向バッファに接続されるレジスタを IOB に配置します。GW5A(S)(T)-138 デバイスの場合、デフォルトは False で、その他の場合、デフォルトは True です。
- Place Option:配置アルゴリズムのオプションです。
 GW5A(N)(S)(R)(T)シリーズの場合、選択可能な値は0、1、2、3、4
 であり、その他のシリーズの場合、選択可能な値は0、1、2です。デフォルトは0です。
- Replicate Resources: 高ファンアウトのリソースを複製してファンア ウトを低減し、タイミングの結果を改善します。デフォルト値は Falseです。このオプションは、GW5A(N)(S)(R)(T)デバイスでのみサ ポートされ、他のデバイスの場合は表示されません。

Route

Route オプションを図 4-24 に示します。

図 4-24 配線オプションの構成

🗱 Configuration		×
	Route	
✓ Global General	Category: All	Reset all to default
Constraints	Label	Value
✓ Synthesize	Clock Route Order	0
General	Run Timing Driven	True
✓ Place & Route	Route Option	0
General	Route Maxfan	23
Voltage Place	Correct Hold Violation	True
Route		
Dual-Purpose Pin		
Unused Pin		
✓ BitStream		
General		
sysControl		
Feature sysControl		
	ОК	Cancel Apply

図 4-24 の各オプションの詳細は以下のとおりです:

- Clock Route Order: クロックプリミティブにより生成されたクロック ライン以外のクロックラインの配線割り当て順を指定します。0と1 の2つのオプションがあり、デフォルトは0です。
 - 0の場合、netのファンアウト数の多い順で割り当てます。
 - 1の場合、周波数の高い順で割り当てます。

- Run Timing Driven:タイミングドリブン配線を実行します。デフォルトは True です。
- Route Option: 配線アルゴリズムのオプション(0、1、または2)です。デフォルトは0です。
 - 0の場合、デフォルトの配線アルゴリズムを使用します。
 - 1の場合、より良い配線結果を見つけるためにコンパイル速度が 低下します。
 - 2の場合、配線速度が向上します。
- Route Maxfan: 配線のファンアウトの最大数を設定します。値は0より大きく100以下の整数である必要があります。この値を小さい値に設定すると、配線が失敗する場合があります。このオプションは、LW(long wire)およびクロック関連の配線を制御しません。デバイスがGW1NZ-1/GW1N-2/GW1NR-2/GW1N-1P5の場合、Route Maxfanのデフォルト値は10で、他のデバイスの場合、デフォルト値は23です。
- Correct Hold Violation: 配線によりタイミングの Hold 違反を自動修正 します。デフォルト値は True です。

Dual-Purpose Pin

Dual-Purpose Pin オプションは、多重化ピンを構成するために使用されます。オプションの上にマウスを置くと、その説明が表示されます。構成オプションの詳細は図 4-25 のとおりです。

図 4-25 多重化ピンオプションの構成

🐳 Configuration		×
	Dual-Purpose Pin	
 Global General Constraints Synthesize General Place & Route General Voltage Place Route Dual-Purpose Pin Unused Pin BitStream General sysControl Feature sysControl 	 Use JTAG as regular IO JTAG related pins are TCK, TMS, TDI, TDO. Use Some as regular IO Use READY as regular IO Use DONE as regular IO Use RECONFIG_N as regular IO Use I2C as regular IO Use CPU as regular IO 	
	OK Cancel	Apply

図 4-25 の各オプションの詳細は以下のとおりです:

- Use JTAG as regular IO: JTAG ピンを通常の IO ピンとして多重化します。
- Use SSPI as regular IO: SSPI ピンを通常の IO ピンとして多重化します。GW5A-25 デバイス MBGA121N パッケージの場合、このオプションはデフォルトでチェック済みで変更不可です。
- Use MSPI as regular IO: MSPI ピンを通常の IO ピンとして多重化します。
- Use READY as regular IO: READY ピンを通常の IO ピンとして多重 化します。
- Use DONE as regular IO: DONE ピンを通常の IO ピンとして多重化 します。
- Use RECONFIG_N as regular IO: RECONFIG_N ピンを通常の IO ピンとして多重化します。
- Use I2C as regular IO: I2C ピンを通常の IO ピンとして多重化します。
- Use CPU as regular IO: CPU ピンを通常の IO ピンとして多重化します。このオプションは GW5A(N)(S)(R)(T)デバイスでのみサポートされます。

Unused Pin

Unused Pin オプションでは、未使用の GPIO の IO 属性を構成できま す。2 つのオプションがあります: As input tri-stated with pull-up (default)、As open drain driving ground。図 4-26 に示すとおりです。

図 4-26 Unused Pin オプション

🐝 Configuration	×
	Unused Pin
 Global General Constraints Synthesize General Place & Route General Voltage Place Route Dual-Purpose Pin Unused Pin BitStream General sysControl 	Specify configurations for all unused pins except the dual-purpose pins. Unused Pin: As input tri-stated with pull-up(default) v All unused pins except the dual-purpose pins, set as input tri-stated, PULL_MODE set as "UP". This is also the default setting for all unused pins.
Feature sysControl	OK Cancel Apply

● As input tri-stated with pull-up (default) :未使用の GPIO を、弱いプ

ルアップを持つトライステート入力として構成します。

 As open drain driving ground:未使用の GPIO を出力として構成しま す(OPEN DRAIN はオン)。

Incremental PnR

Incremental PnR オプションは、インクリメンタル・コンパイル機能 を選択するために使用されます。このオプションを有効にすることによ り、前回の配置または配置配線の結果を再利用でき、再度配置と配線の時 間が短縮され、作業効率が向上します。このオプションは図 4-27 に示す とおりです。

図 4-2	7 Incr	emental	PnR	オブ	゚ショ	ン
-------	--------	---------	-----	----	-----	---

🐳 Configuration	>	<
	Incremental PnR	
General Constraints	Incremental Placement Only	
✓ Synthesize General	Incremental Placement and Routing	
✓ Place & Route		
General		
Place		
Route		
Dual-Purpose		
Unused Pin		
RitStream		
General		
sysControl		
Feature sysCo		
	v	
	OK Cancel Apply	

各オプションの詳細は以下のとおりです:

Incremental Placement Only: インクリメンタル配置のみ。デフォル トではチェックされていません。チェックすると、以下のサブ構成オプシ ョンが表示されます。

- Auto:再度配置時に、プロジェクトパスにある既存のインクリメンタ ル配置ファイル *.p が自動的に選択されます。*.p ファイルがプロジ ェクトパスに存在しない場合は、プロンプトが表示されます。
- Specify the previous placement file: インクリメンタル配置ファイル
 *.p を手動で指定します。

Incremental Placement and Routing: インクリメンタル配置配線。デフォルトではチェックされていません。チェックすると、以下のサブ構成オプションが表示され、「Incremental Placement Only」は選択できなくなります。

- Auto:再度配置配線時に、プロジェクトパスにある既存のインクリメ ンタル配置配線ファイル*.pr が自動的に選択されます。*.pr ファイル がプロジェクトパスに存在しない場合は、プロンプトが表示されま す。
- Specify the previous placement and routing file: インクリメンタル配置配線ファイル*.pr を手動で指定します。

BitStream

BitStream では、GOWIN チップのダウンロードモードのビットスト リームファイル形式やダウンロード速度などを構成します。オプションの 上にマウスを置くと、その説明が表示されます。BitStream の構成オプシ ョンには、General、sysControl、および Feature sysControl がありま す。各オプションの意味を表 4-2 に示します。

表 4-2 BitStream の構成オプションの意味

オプション	説明
General	BitStreamの一般的なパラメータの構成に使用されます。
sysControl	BitStream のシステム制御パラメータの構成に使用されます。
Featrue sysControl	BitStreamの機能システム制御パラメータの構成に使用されます。

General

General オプションの構成を図 4-28 に示します。

図 4-28 Bitstream の General オプションの構成

🐝 Configuration	×
	BitStream
 Global General Constraints Synthesize General Place & Route General Voltage Place Route Dual-Purpose Pin Unused Pin BitStream General sysControl Feature sysControl 	 ☑ Enable CRC Check □ Enable Compress ☑ Enable Security Bit □ Secure Mode ☑ Power On Reset Monitor □ Turn Off Bandgap ☑ Print BSRAM Initial Value Bitstream Format: Binary ∨
	OK Cancel Apply

図 4-28 各パラメータの詳細は以下のとおりです:

- Enable CRC Check: 巡回冗長検査を有効にします。デフォルトでは チェックされています。
- Enable Compress:ビットストリームファイルの圧縮を有効にしま す。デフォルトではチェックされていません。
- Enable Encryption:ビットストリームファイルを暗号化します(Arora ファミリーのみこのオプションをサポート)。デフォルトではチェッ クされていません。
- Key(Hex):ここでは、暗号化キーをカスタマイズできます(Arora ファ ミリーのみをサポート)。「Enable Encryption」がチェックされている 場合にのみ編集できます。デフォルトではキーはすべて0です。この オプションをチェックして配置配線を実行すると、キー・ファイ ル.ekey が生成されます。
- Enable Security Bit: セキュリティ・ビット制御を有効にします。ビットストリームファイルにセキュリティ・ビットを追加すると、ビットストリームをリードバックすることはできません。デフォルトではチェックされています。
- Secure Mode: セキュアモードを有効にすると、JTAG ピンは GPIO となり、デバイスは1回しかプログラムできなくなります。この機能 はGW1NSER-4C デバイスのみでサポートされ、デフォルトではチェ ックされていません。
- Power On Reset Monitor:パワーオンリセット監視。デフォルトでチェックされています。このオプションをチェックすると、電源レールの電圧降下が継続的に監視されます。電源レール電圧が POR スレッショルドを下回ると、RAM のすべてのビットがクリアされ、使用されている I/O が内部の弱いプルアップ抵抗によってトライステートに設定されます。次にコンフィグレーションと初期化を完了します。
- Turn Off Bandgap: Bandgap 機能をオフにします。デフォルトではチェックされていません。Bandgap はチップ内の一部のモジュールに一定の電圧と電流を供給します。Bandgap をオフにすると、デバイスの消費電力を削減できます。このオプションは、GW1N-1 デバイスでのみサポートされ、他のデバイスの場合は表示されません。
- Print BSRAM Initial Value: BSRAMの初期値をビットストリームファイルに書き込みます。デフォルトではチェックされています。 GW1N(X)シリーズおよび GW2A(X)シリーズの場合、このオプションをチェックすると、すべての位置の BSRAMの初期値がビットストリームファイルに書き込まれます(占有されていない BSRAM 位置の初期値は0として取り扱われます)。GW5A(N)(S)(R)(T)デバイスの場合、このオプションをチェックすると、占有された BSRAM の所在列にあるすべての BSRAM の初期値がビットストリームファイルに書き込まれます(この列の占有されていない BSRAM 位置の初期値は0として取り扱われます)。

 Bitstream Format:ビットストリームファイルの形式を指定します。 Text と Binary(デフォルト)の2つの形式があります。Text を選択する場合、プレーンテキスト形式の*.fs ファイルが生成され、Binary を選択する場合、*.fs、*.bin、および*.binx 形式のビットストリームファイルが生成されます。*.bin および*.binx はバイナリ形式のビットストリームファイルで、*.binx ファイルにはヘッダーコメント情報が含まれ、*.bin にはヘッダーコメント情報が含まれていません。

sysControl

sysControl オプションの構成を図 4-29 に示します。

図	4-29	sysControl	オブ	゚ショ	ンの構成
---	------	------------	----	-----	------

SysControl ✓ Global General Constraints Synthesize General Vertice & Route General Voltage Place Route Dual-Purpose Pin Unused Pin Incremental PnR BitStream BitStream Program Done Bypass Program Done Bypass O Program Done Bypass User Code Program Done Bypass O O O O Casta Program Done Bypass Oute Dual-Purpose Pin Unused Pin Incremental PnR 	Configuration		>
 Global General Constraints Wake Up Mode: Outono Synthesize General Vadarge Place Route Dual-Purpose Pin Unused Pin Incremental PnR PitStream 		sysControl	
General sysControl Feature sysControl	 ✓ Global General Constraints ✓ Synthesize General ✓ Place & Route General Voltage Place Route Dual-Purpose Pin Unused Pin Incremental PnR ✓ BitStream General sysControl Feature sysControl 	Program Done Bypass Wake Up Mode: User Code Default Code Default Costor 00000 Loading Rate (MHz): Enable (MHz): Enable External Master Config Clock Enable SEU Handler CSR File:	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

図 4-29 各パラメータの詳細は以下のとおりです:

- Program Done Bypass: Done Final 信号が有効になった場合、外部の Done 信号を Low のままにすることにより、ビットストリームがロー ドされた後に新しいビットストリームデータを転送できるようにしま す。
- Wake Up Mode: チップのウェイクアップモード。値は0(デフォルト)と1です。
 - Wake Up Mode が 0 の場合、DONE ピンを High または Low にプ ルしても Wake Up には影響しません。
 - Wake Up Mode が 1 の場合:
 - a) Wake Up Mode が 1 の場合、DONE ピンが High にプルアッ プされている場合、正常にダウンロードでき、かつチップは 正常に動作できます。

- b) DONE ピンが Low にプルダウンされている場合、ダウンロー ドできますが、デバイスをウェイクアップするには、ダウン ロードされた後、DONE ピンを High にプルアップして TCK をパルス信号に接続する必要があります。
- User Code: User Code はカスタマイズできます。カスタマイズされた値は生成されたビットストリームファイルに反映され、User Codeはビットストリームファイルが Programmer を介してダウンロードされるときに検証されます。デフォルトは 00000000 です。
- Loading Rate: AUTO BOOT コンフィギュレーション・モードおよび MSPI コンフィギュレーション・モードでの、Flash から SRAM への ビットストリームファイルの読み込み速度です。GW1N-4/GW1NRF-4B/GW1NR-4 の場合、デフォルトで 2.100MHz です。C7/I6 スピード グレードの GW1NS-4/GW1NSR-4/GW1NSER-4C の的場合、デフォ ルトで 2.6MHz です。GW5A(S)(T)-138/GW5A(R)-25 の的場合、デフ ォルトで 35.000MHz です。その他のデバイスの場合、デフォルトで 2.500MHz です。AUTO BOOT コンフィギュレーション・モードおよ び MSPI コンフィギュレーション・モードについては、『Gowin FPGA 製品プログラミング・コンフィギュレーション ユーザーガイド (UG290)』、『Arora V 138K FPGA 製品プログラミング・コンフィギュ レーション ユーザーガイド(UG704)』、および『Arora V 25K FPGA 製品プログラミング・コンフィギュレーション ユーザーガイド (UG714)』を参照してください。Loading Rate の値と計算方法はデバ イスによって異なります。
 - 次のデバイスとパッケージの組み合わせは 2.500MHz の Loading Rate のみをサポートします。
 - a) GW1N-2 : LQFP100X/LQFP144X/MBGA132X/WLCSP42H/MBGA49
 - b) Bバージョンの GW1N-2 : LQFP100X/LQFP144X/MBGA132X/MBGA121X
 - c) C バージョンの GW1N-2 : LQFP100X/LQFP144X/MBGA132X/MBGA121X /MBGA49/QFN32X
 - d) GW1NR-2 : MBGA49P/MBGA49PG/MBGA49G
 - e) B バージョンの GW1NR-2 : MBGA49P/MBGA49PG/MBGA49G
 - f) Cバージョンの GW1NR-2 : MBGA49P/MBGA49PG/MBGA49G
 - g) GW1N-1P5 : LQFP100X
 - h) Bバージョンの GW1N-1P5 : LQFP100X/QFN48X
 - i) Cバージョンの GW1N-1P5 : LQFP100X/QFN48X

- 次のデバイスの Loading Rate の値と計算方法は表 4-3 に示すとおりです。
 - a) GW1NZ-1
 - b) GW1N-2/GW1N-1P5/GW1NR-2(上記の 2.500MHz のみをサポ ートするパッケージを除く)
 - c) GW1NSER-4C/GW1NS-4/GW1NSR-4/GW1NS-4C/ GW1NSR-4C(スピードグレードが C7/I6 のデバイスを除く)
 - d) GW1N-9/GW1NR-9
 - e) GW2A-18/GW2AR-18/C バージョンの GW2ANR-18
 - f) GW2A-55/C バージョンの GW2AN-55

表 4-3 Loading Rate の値と計算方法(一)

Loading Rate (MHz)	分数表記
2.500 (default)	250 / 100
5.435	250 / 46
5.682	250 / 44
5.952	250 / 42
6.250	250 / 40
6.579	250 / 38
6.944	250 / 36
7.353	250 / 34
7.812	250 / 32
8.333	250 / 30
8.929	250 / 28
9.615	250 / 26
10.417	250 / 24
11.364	250 / 22
12.500	250 / 20
13.889	250 / 18
15.625	250 / 16
17.857	250 / 14
20.833	250 / 12
25.000	250 / 10
31.250	250 / 8
41.667	250 / 6
62.500	250 / 4

次のデバイスの Loading Rate の値と計算方法は表 4-4 に示すとおりです。

GW1N-1/GW1N-1S/GW1NR-1

表 4-4 Loading Rate の値と計算方法(二)

Loading Rate(MHz)	分数表記
2.500 (default)	240 / 96
2.553	240 / 94
2.609	240 / 92
2.667	240 / 90
2.727	240 / 88
2.791	240 / 86
2.857	240 / 84
2.927	240 / 82
3.000	240 / 80
3.077	240 / 78
3.158	240 / 76
3.243	240 / 74
3.333	240 / 72
3.429	240 / 70
3.529	240 / 68
3.636	240 / 66
3.750	240 / 64
3.871	240 / 62
4.000	240 / 60
4.138	240 / 58
4.286	240 / 56
4.444	240 / 54
4.615	240 / 52
4.800	240 / 50
5.000	240 / 48
5.217	240 / 46
5.455	240 / 44
5.714	240 / 42
6.000	240 / 40
6.316	240 / 38
6.667	240 / 36
7.059	240 / 34
7.500	240 / 32
8.000	240 / 30
8.571	240 / 28
9.231	240 / 26

Loading Rate(MHz)	分数表記
10.000	240 / 24
10.909	240 / 22
12.000	240 / 20
13.333	240 / 18
15.000	240 / 16
17.143	240 / 14
20.000	240 / 12
24.000	240 / 10
30.000	240 / 8
40.000	240 / 6
60.000	240 / 4

- 次のデバイスの Loading Rate の値と計算方法は表 4-5 に示すとおりです。
 - a) GW2AN-9X
 - b) GW2AN-18X

表 4-5 Loading Rate の値と計算方法(三)

Loading Rate(MHz)	分数表記
2.500 (default)	200 / 80
1.562	200 / 128
1.587	200 / 126
1.613	200 / 124
1.639	200 / 122
1.667	200 / 120
1.695	200 / 118
1.724	200 / 116
1.754	200 / 114
1.786	200 / 112
1.818	200 / 110
1.852	200 / 108
1.887	200 / 106
1.923	200 / 104
1.961	200 / 102
2.000	200 / 100
2.041	200 / 98
2.083	200 / 96
2.128	200 / 94
2.174	200 / 92

Loading Rate(MHz)	分数表記
2.222	200 / 90
2.273	200 / 88
2.326	200 / 86
2.381	200 / 84
2.439	200 / 82
2.564	200 / 78
2.632	200 / 76
2.703	200 / 74
2.778	200 / 72
2.857	200 / 70
2.941	200 / 68
3.030	200 / 66
3.125	200 / 64
3.226	200 / 62
3.333	200 / 60
3.448	200 / 58
3.571	200 / 56
3.704	200 / 54
3.846	200 / 52
4.000	200 / 50
4.167	200 / 48
4.348	200 / 46
4.545	200 / 44
4.762	200 / 42
5.000	200 / 40
5.263	200 / 38
5.556	200 / 36
5.882	200 / 34
6.250	200 / 32
6.667	200 / 30
7.143	200 / 28
7.692	200 / 26
8.333	200 / 24
9.091	200 / 22
10.000	200 / 20
11.111	200 / 18
12.500	200 / 16
14.286	200 / 14

Loading Rate(MHz)	分数表記
16.667	200 / 12
20.000	200 / 10
25.000	200 / 8
33.333	200 / 6
50.000	200 / 4
100.000	200 / 2

次のデバイスの Loading Rate の値と計算方法は表 4-6 に示すとおりです。

GW1N-4/GW1NRF-4B/GW1NR-4

表 4-6 Loading Rate の値と計算方法(四)

0	
Loading Rate (MHz)	分数表記
2.100 (default)	210 / 100
4.565	210 / 46
4.773	210 / 44
5.000	210 / 42
5.250	210 / 40
5.526	210 / 38
5.833	210 / 36
6.176	210 / 34
6.563	210 / 32
7.000	210 / 30
7.500	210 / 28
8.077	210 / 26
8.750	210 / 24
9.545	210 / 22
10.500	210 / 20
11.667	210 / 18
13.125	210 / 16
15.000	210 / 14
17.500	210 / 12
21.000	210 / 10
26.250	210 / 8
35.000	210/6
52.500	210/4

- 次のデバイスの Loading Rate の値と計算方法は表 4-7 に示すとお

りです。

GW1NSER-4C/GW1NS-4/GW1NSR-4/GW1NS-4C/GW1NSR-4C(スピードグレード C7/I6)

表 4-7 Loading Rate	の値と計算方法(五)
--------------------	------------

Loading Rate (MHz)	分数表記
2.600	260 / 100
5.652	260 / 46
5.909	260 / 44
6.190	260 / 42
6.500	260 / 40
6.842	260 / 38
7.222	260 / 36
7.647	260 / 34
8.125	260 / 32
8.667	260 / 30
9.286	260 / 28
10.000	260 / 26
10.833	260 / 24
11.818	260 / 22
13.000	260 / 20
14.444	260 / 18
16.250	260 / 16
18.571	250 / 14
21.667	260 / 12
26.000	260 / 10
32.500	260 / 8
43.333	260 / 6
65.000	260 / 4

次のデバイスの Loading Rate の値と計算方法は表 4-8 に示すとおりです。

GW5A(S)(T)-138/GW5A(R)-25/GW5AT-75

表 4-8 Loading Rate	の値と計算方法(六)
--------------------	------------

Loading Rate (MHz)	分数表記
35.000(default)	210 / 6
52.500	210 / 4
70.000	210/3
105.000	210/2

次のデバイスの Loading Rate の値と計算方法は表 4-9 に示すとおりです。

GW5AT-60/GW5A(N)(R)T-15

表 4-9 Loading Rate の値と計算方法(七)

Loading Rate (MHz)	分数表記
2.500 (default)	210 / 84
1.667	210 / 126
1.694	210 / 124
1.721	210 / 122
1.750	210 / 120
1.780	210 / 118
1.810	210 / 116
1.842	210 / 114
1.875	210 / 112
1.909	210 / 110
1.944	210 / 108
1.981	210 / 106
2.019	210 / 104
2.059	210 / 102
2.100	210 / 100
2.143	210 / 98
2.188	210 / 96
2.234	210 / 94
2.283	210 / 92
2.333	210 / 90
2.386	210 / 88
2.442	210 / 86
2.561	210 / 82
2.625	210 / 80
2.692	210 / 78
2.763	210 / 76
2.838	210 / 74
2.917	210 / 72
3.000	210 / 70
3.088	210 / 68
3.182	210 / 66
3.281	210 / 64
3.387	210 / 62

Loading Rate (MHz)	分数表記
3.500	210/60
3.621	210 / 58
3.750	210 / 56
3.889	210 / 54
4.038	210 / 52
4.200	210 / 50
4.375	210 / 48
4.565	210 / 46
4.773	210 / 44
5.000	210 / 42
5.250	210 / 40
5.526	210 / 38
5.833	210 / 36
6.176	210/34
6.563	210/32
7.000	210/30
7.500	210 / 28
8.077	210/26
8.750	210 / 24
9.545	210/22
10.500	210 / 20
11.667	210 / 18
13.125	210 / 16
15.000	210 / 14
17.500	210 / 12
21.000	210 / 10
26.250	210 / 8
35.000	210/6
52.500	210/4
70.000	210/3
105.000	210/2

 Background Programming: FPGA の動作を中断しないまま FPGA を 再プログラミングするバックグラウンド・アップグレード機能です。 現在のデバイスの Background Programming の値が OFF のみの場 合、構成画面にはこの構成オプションは表示されません。

☑ 4-30 Background Programming : I2C

Background Programmi	ng:	I2C	•
I2C Slave Address(Hex):	00	•	(00 <i>·</i>

⊠ 4-31 Background Programming : I2C/JTAG/SSPI/QSSPI

Background Programming: I2C/JTAG/SSPI/QSSPI -

HOTBOOT

バックグラウンド・アップグレードをサポートするデバイスとその値 は次に示すとおりです。

表 4-10 Background Programming の値

デバイスタイプ	Background Programmingの値
 GW1N-1P5/GW1N-2/GW1NR-2 Bバージョン:GW1N-4/GW1NR-4、GW1NRF-4 Dバージョン:GW1NR-4 GW1NS-4/GW1NSR-4 GW1N-9/GW1NR-9 GW1NZ-1 	OFF、JTAG デフォルトではOFF
B バージョン:GW1N-1P5/GW1N- 2/GW1NR-2	OFF、JTAG、I2C デフォルトではOFF
C バージョン:GW1N-2/GW1NR- 2/GW1N-1P5	OFF、GoConfig、GoConfig Mode1、 JTAG、I2C デフォルトではOFF
GW2AN-18X/GW2AN-9X	OFF 、 GoConfig 、 UserLogic 、 I2C/JTAG/SSPI/QSSPI デフォルトではOFF
GW5A(N)(S)(R)(T)	OFF、UserLogic、JTAG/SSPI/QSSPI デフォルトではOFF

Background Programming の各値の機能および注意事項は、次のとおりです。

- OFF:バックグラウンドプログラミング機能をオフにします。デバイスが GW2AN-18X または GW2AN-9X の場合、「Dual-Purpose Pin」ダイアログボックスの「Use MSPI as regular IO」がチェックされておらず、設定不可になります。
- JTAG: JTAG モードでバックグラウンド・アップグレードを実行 します。
- I2C: I2C モードでバックグラウンド・アップグレードを実行しま

す。B バージョンの GW1N-1P5/GW1N-2/GW1NR-2 デバイスの 場合、オプション「I2C Slave Address(Hex)」が構成ダイアログ ボックスに表示され、ユーザーが I2C デバイスのアドレスを設定 できます。その範囲は 00~7F です(図 4-30)。I2C を選択した後、 「Dual-Purpose Pin」ダイアログボックスの「Use JTAG as regular IO」がチェックされておらず、設定不可になります。C バ ージョンの GW1N-2/GW1N-1P5/GW1NR-2 デバイスの場合、I2C モードでバックグラウンド・アップグレードを実行すると、オプ ション「I2C Slave Address(Hex)が構成ダイアログボックスに表 示されず、「Dual-Purpose Pin」ダイアログボックスの「Use RECONFIG as regular IO」はチェックされておらず、設定不可に なります。

- GoConfig: goConfig IP でバックグラウンド・アップグレードを 実行します。
- UserLogic:内部論理でバックグラウンド・アップグレードを実行 します。
- I2C/JTAG/SSPI/QSSPI: I2C/JTAG/SSPI/QSSPI モードでバック グラウンド・アップグレードを実行します。
- JTAG/SSPI/QSSPI: JTAG/SSPI/QSSPI モードでバックグラウンド・アップグレードを実行します。
- GW2AN-18X/GW2AN-9Xの場合、GoConfig または UserLogic または I2C/JTAG/SSPI/QSSPI を選択すると、構成オプション 「HOTBOOT」がダイアログボックスに表示されます(図 4-31)。 デフォルトではチェックされていません。
- GW5A(S)(T)-138/GW5A(R)-25 の場合、UserLogic または JTAG/SSPI/QSSPI を選択すると、構成オプション 「HOTBOOT」がダイアログボックスに表示されます(図 4-31)。 デフォルトではチェックされていません。
- Bバージョンの GW1N-1P5/GW1N-2/GW1NR-2 の場合、構成オ プションの切り替え前後に I2C が含まれていると、Synthesize と Place&Route のステータスが古くなります。Cバージョンの GW1N-1P5/GW1N-2/GW1NR-2 の場合、構成オプションの切り替 え前後に I2C が含まれていると、Place&Route のステータスのみ が古くなります。
- GW2AN-18X/GW2AN-9Xの場合、GoConfig, UserLogic と、 I2C/JTAG/SSPI/QSSPI, OFF を切り替えると、Synthesize と Place & Route のステータスが古くなり、それ以外は、Place & Route のステータスのみが古くなります。
- Enable External Master Config Clock:外部マスター・コンフィギュ レーション・クロックを有効にし(GW5A(N)(S)(R)(T)のみこのオプシ ョンをサポート)。デフォルトではチェックされていません。このオ

プションをチェックすると、ダイアログボックスに「Frequency Divider」という構成オプションが表示されます(図 4-32)。
GW5A(S)(T)-138/GW5AT-75 の場合、選択可能な値は 1、2、4、8
で、デフォルトは 1 です。GW5A(S) (R)-25/GW5AT60/GW5A(N)(R)T-15 の場合、選択可能な値は 1、2~1022 の偶数で、
デフォルトは 1 です。

図 4-32 Frequency Divider オプション

Enable External Master Config Clock
Frequency Divider 1

 Enable SEU Handler:シングル・イベント・アップセット・ハンドラ (Single-Event Upsets Handler、SEU Handler)を有効にします。この機能は GW5A(N)(S)(R)(T)デバイスのみでサポートされ、デフォルトではチェックされていません。このオプションをチェックすると、ダイアログボックスに設定サブオプション(「Enable SEU Handler CheckSum」、「Enable Error Detection only」、「Enable Error Detection and Correction」、「Stop SEU Handler when detected uncorrectable ECC error or CRC checksum mismatch error」、「Mode」、「Enable Error Injection」)が表示されます。このうち、「Enable Error Detection only」と「Enable Error Detection and Correction」は同時にチェック できません。図 4-33 に示す通りです。

図 4-33 Enable SEU Handler オプション

図 4-34 Enable Error Injection オプション

Mode	UserLogic 🔻	
Enable Error Injection		

- Enable SEU Handler CheckSum:シングル・イベント・アップセット・ハンドリング、検出、計算、比較を有効にします。デフォルトではチェックされていません。
- Enable Error Detection only: エラー検出のみを有効にします。デ フォルトではチェックされていません。

- Enable Error Detection and Correction: エラーの検出と訂正を有 効にします。デフォルトではチェックされていません。
- Stop SEU Handler when detected uncorrectable ECC error or CRC checksum mismatch error: 訂正不可能な ECC エラーまたは CRC チェックサム・ミスマッチ・エラーが検出された場合、SEU Handler を停止します。デフォルトではチェックされていません。
- Mode: SEU Handler を開始または停止するモードを選択します。選択可能な値は Auto と UserLogic で、デフォルトは Auto です。
- Enable Error Injection:エラー挿入を有効にします。このオプションは UserLogic が Mode として選択されている場合に表示されます。デフォルトではチェックされていません。
- CSR File: csr ファイルを指定します。

Feature sysControl

非 GW5A(N)(S)(R)(T)デバイスの場合、Feature sysControl オプション の構成は図 4-35 に示すとおりです。

図 4-35 GW5A(N)(S)(R)(T)以外のデバイスの Feature sysControl オプション

	Feature sysControl	
 Global 	V Multi Boot	
General Constraints	SPI Flash Address 00000000	
 Synthesize 		
General		
 Place & Route 		
General		
Voltage		
Place		
Route		
Dual-Purpose Pin		
Unused Pin		
✓ BitStream		
General		
sysControl		
Feature sysControl		

デフォルトで Multi Boot がチェックされており、サブ構成オプション の SPI Flash Address も表示されます。

SPI Flash Address: SPI Flash アドレスを指定します。SPI Flash アドレスは、次の multiboot の際にビットストリームファイルが読み込まれる開始アドレスです。GW2AN-18X と GW2AN-9X の場合、デフ

オルトで 000000 であり、その他のデバイス(GW5A(N)(S)(R)(T)を除 く)の場合、デフォルトで 00000000 です。詳細については、『Gowin Programmer ユーザーガイド(SUG502)』を参照してください。

GW5A(N)(S)(R)(T)デバイスの場合、**Feature sysControl** オプションの 構成は図 **4-36** に示すとおりです。

図 4-36 GW5A(N)(S)(R)(T)デバイスの Feature sysControl オプション

🐳 Configuration		×
	Feature sysContr	rol
 Global General Constraints Synthesize General Place & Route General Voltage Place Route Dual-Purpose Pin Unused Pin Incremental PnR BitStream General sysControl 	Multi Boot Address Width SPI Flash Address Mode MSPI JUMP Brable Merge I Address Width SPI Flash Address Mode	24 000000 Single 24 Vode 24 24 V 000000 Single V
		OK Cancel Apply

Multi Boot はデフォルトではチェックされていません。チェックする と、以下のサブ構成オプションが表示されます。

表 4-11 サブ構成オプション

名称	説明
Address Width	SPI Flashアドレスの幅(24(デフォルト値)、32)を構成し ます。
SPI Flash Address	SPI Flashアドレスを指定します。SPI Flashアドレス は、次のmultibootの際にビットストリームファイルが読 み込まれる開始アドレスで、デフォルトは000000で す。詳細については、『Gowin Programmerユーザーガ イド(<u>SUG502</u>)』を参照してください。
Mode	SPI Flashのアクセスモードを構成します。アクセスモードには、Normal、Fast、Dual、およびQuadがあり、 デフォルトはSingleです。

MSPI JUMP はデフォルトではチェックされていません。チェックすると、以下のサブ構成オプションが表示されます。

表 4-12 サブ構成オプション

名称	説明
Enable Merge Mode	デフォルトではチェックされていません。チェックする と、MSPI JUMPビットストリームファイルは汎用ビッ トストリームファイルにマージされます。

名称	説明
Address Width	SPI Flashアドレスの幅(24(デフォルト値)、32)を構成し ます。
SPI Flash Address	SPI Flashアドレスを指定します。デフォルトは000000 です。
Mode	SPI Flashのアクセスモードを構成します。アクセスモードには、Normal、Fast、Dual、およびQuadがあり、 デフォルトはSingleです。

4.4 プロジェクトのプロセス管理

プロセス管理エリアで、Gowin ソフトウェアのプロセスがリストさ れます(図 4-37)。このウィンドウでは、次の操作が可能です。

- Design 概要の確認。
- 物理制約エディタの起動。
- タイミング制約エディタの起動。
- 合成の実行。
- 合成設計レポートの確認。
- 配置配線の実行。
- Place&Route 後に生成されたレポートの確認。
- Programmer の起動。

図 4-37 Process ウィンドウ

4.4.1 Design Summary

新しいプロジェクトを作成するとき、ソフトウェアにより Design
Summary というレポートが提供されます。レポートには、プロジェクト ファイルのパス、合成ツール情報、およびデバイス情報が含まれます。 Design Summary を開くには、次の3つの方法があります。

- GOWIN FPGA Designer メニューで「Window> Design Summary」を 選択します。
- Process ウィンドウで「Design Summary」をダブルクリックします。
- Process ウィンドウで「Design Summary」を右クリックして 「Open」を選択します。

図 4-38 Design Summary

General						
Project File:	D:\gowin_project\daily_test\daily_test.gprj					
Synthesis Tool:	GowinSynthesis					
	Target Device					
Part Number:	GW1N-UV4PG256C6/I5					
Series:	GW1N					
Device:	GW1N-4					
Device Version:	В					
Package:	PBGA256					
Speed Grade:	C6/I5					
Core Voltage:	UV					

注記:

Device Version がないデバイスの場合、表に **Device Version** の行は表示されません。

4.4.2 User Constraints

User Constraints によって、制約ファイルを素早く開き、作成することができます。User Constraints には、物理制約とタイミング制約があります。

制約エディタの詳細については『Gowin タイミング制約ユーザーガイド(<u>SUG940</u>)』、『Gowin 物理制約ユーザーガイド(<u>SUG935</u>)』、およびを 『Arora V物理制約ユーザーガイド(<u>SUG1018</u>)』参照してください。

4.4.3 Synthesize

GowinSynthesis は Gowin によって開発された合成ツールです。 GOWINSEMI ライブラリファイルとその実装をサポートしています。現 在は Verilog 言語(System Verilog 2017、Verilog 2001、および Verilog 95)、VHDL 言語(VHDL1993、VHDL 2008)をサポートしています。

図 4-20 に示すように、Synthesize を右クリックし「Configuration」 を選択し、合成ツールを選択します。

Synthesize エリアでは、合成の実行、合成パラメータの設定、ネットリスト・ファイル(Netlist File)の管理、合成レポート(Synthesis Report)の管理といった機能を提供します。合成レポートの詳細については、6.1 合成レポートを参照してください。

合成するには、以下の手順を参照してください。

- 1. Synthesis オプションを構成します。Synthesis オプションの構成については、4.3.3 プロジェクトの構成を参照してください。
- 2. Synthesize を実行。
- プロセス管理エリアで「Synthesize」をダブルクリックするか、 「Synthesize」を右クリックして Run をクリックし、合成ツールを起 動してソースファイルを合成します。合成に成功すれば、Synthesize の前にアイコン ✓ が表示されます。失敗した場合はアイコン ^① が表 示されます。
- 正常に合成した後、「Netlist File」または「Synthesis Report」をダブ ルクリックするか、これらを右クリックして Open オプションを選択 すると、ネットリスト・ファイルや合成レポートを確認できます。ま た、生成されたネットリスト・ファイルや合成レポートの名前とプロ ジェクト名は同じです。生成される合成後ネットリスト・ファイルは *.vg で、合成レポートは*_syn.rpt.html です。

合成前(Synthesize アイコンが)に、「Netlist File」または 「Synthesis Report」をダブルクリックするか、これらを右クリックして Open オプションを選択すると、まず合成が行われます。合成完了後、ネ ットリスト・ファイルまたは合成レポートが開きます。

「Synthesize」の右クリックによる可能な操作は次のとおりです(図 4-39)。

- Run: Synthesize の前のアイコンが (初期状態)、⁽¹⁾(失敗した状態)、または⁽²⁾(古い状態)の場合のみ、このオプションを選択すると 合成ツールが起動してソースファイルを合成します。
- Rerun: Synthesize の状態に関わらず、このオプションを選択すると 合成ツールを起動し、ソースファイルを合成します。
- Rerun All: Synthesize と Place & Route の状態に関わらず、このオプションを選択すると、ソースファイルが再合成されて配置配線されます。
- Clean&Rerun All: プロジェクト・フォルダ impl の下の gwsynthesis フォルダと pnr フォルダをクリアし、Synthesize と Place&Route を 再実行します。
- Stop: Synthesize プロセスを停止します。
- Clean: 合成後フォルダ(gwsynthesis)をクリアします。
- Configuration : Synthesize のパラメータを設定します。

図 4-39 Synthesize の右クリックメニュー Process ラ × ■ Design Summary V ② User Constraints ■ FloorPlanner ※ Timing Constraints Editor V ■ Rerun ② Rerun ② Rerun ② Rerun ② Clean&Rerun All ■ Stop Clean ③ Configuration ■ Programmer

4.4.4 Place & Route

Place & Route は、配置配線の実行、配置配線パラメータの設定、配置配線後に生成されたファイル管理を実装します。

注記:

Place & Route は合成プロセスに依存します。この手順を実行する時、その依存項目 (Synthesize)が実行されていない場合、まず Synthesize(Synplify Pro)が実行され、その後この手順が実行されます。

以下の手順で Place & Route を実行します。

- 1. Place & Route オプションを構成します。Place & Route オプションの 構成については、4.3.3 プロジェクトの構成を参照してください。
- Place & Route を実行します。「Place & Route」をダブルクリックする か、「Place & Route」を右クリックして Run をクリックすると、配置 配線が実行され、ビットストリームファイルおよび関連するレポート ファイルが生成されます。実行に成功すれば、Place & Route の前に アイコン✔が表示されます。失敗した場合はアイコン^①が表示されま す。
- 正常に配置配線した後、Place & Route の下でファイルをダブルクリ ックするか、右クリックして「Open」を選択すると、テキスト編集エ リアでレポートファイルを確認できます。
- 4. 生成される 4 つのレポートファイル、つまり配置配線レポート(Place & Route Report)、タイミング解析レポート(Timing Analysis Report)、ポート属性レポート(Ports & Pins Report)、および電力解析レポート (Power Analysis Report)を確認できます。詳しくは、6.2 配置配線レポ ート、6.3 ポート属性レポート、6.4 タイミングレポート、および 6.5 消費電力解析レポートを参照してください。

注記:

- 現在すでにレポートファイルを開いており、さらに Place & Route を実行して レポートファイルを生成し直すと、ファイルを更新するかというメッセージが 表示されます。
- Place & Route の実行前(Place & Route の前のアイコンが)、レポートファイ ルをダブルクリックするか、このレポートファイルを右クリックして「Open」 を選択すると、まず Place & Route が実行され、実行後にレポートファイルが 開きます。

Place & Route の右クリックによる可能な操作は次のとおりです。

- Run: Place & Route の前のアイコンが[■](初期状態)、[●](失敗した状態)、または²(古い状態)の場合にのみ、このオプションを選択すると Place & Route が実行されます。
- Rerun : Place & Route の状態に関わらず、このオプションを選択す ると Place & Route が再実行されます。
- Rerun All: Synthesize と Place & Route の状態に関わらず、このオプションを選択すると、ソースファイルが再合成されて配置配線されます。
- Clean & Rerun All: プロジェクト・フォルダ impl の下の gwsynthesis フォルダと pnr フォルダをクリアし、Synthesize と Place&Route を 再実行します。
- Stop: Place & Route プロセスを停止します。
- Clean: Place & Route によって生成されたフォルダ(pnr)をクリアします。フォルダの削除に失敗した場合、警告情報が報告されます。
- Configuration : Place & Route のパラメータを設定します。

4.4.5 Programer

Gowin ソフトウェアの配置配線が成功すると、ビットストリームフ アイルが生成されます。ビットストリームファイルをチップにダウンロー ドするには、GOWIN セミコンダクターの Programmer を使用する必要が あります。

注記:

Programer は、**Synthesize** と **Place** & **Route** ステップに依存しています。このステ ップの実行時にその依存ステップ(**Synthesize** と **Place** & **Route**)がまだ実行され ていない場合、警告が表示されます。

「Programer」をダブルクリックするか、この項目を右クリックして 「Run」オプションを選択すると、Programmer が開きます(図 4-40)。

注記:

Linux インストールパッケージの Programmer は、Red Hat 6 以降のみをサポート し、Linux カーネルバージョンは 2.18 以降である必要があります。

図 4-40 Programmer の GUI

💖 Gowin Programmer Version 1.9.8.08 build 200915 —							-	×
F	ile Ed	t Tools A	bout					
******	Q 4	661	1 🤛 📭	USB Cable Setting				
Г	Enable	Series	Device	Operation	FS File	User Code	IDCODE	
1	\checkmark	GW1N	GW1N-1	SRAM Program	D:/gowin_project/daily_test/impl/pnr/daily_test.fs	0x000037A8	0900281B	
0	atput							đ×
Ir	fo	Cost 0.0 sec	ond(s)					
L								
Re	eady							

Programmer の使用法については、『Gowin Programmer ユーザーガ イド(<u>SUG502</u>)』を参照してください。

4.5 プロジェクトのアーカイブと復元

Gowin ソフトウェアは、現在のプロジェクトのアーカイブとアーカ イブされたプロジェクトの復元をサポートしています。メニューバーの 「Archive Project」および「Restore Archived Project」をクリックして、 プロジェクトをアーカイブまたは復元します。

4.5.1 プロジェクトのアーカイブ

メニューバーの Project で「Archive Project」をクリックすると、」プ ロジェクトのアーカイブ」ダイアログボックスが表示されます(図 4-41)。 オプションの上にマウスを置くとその説明が表示されます。

- Archive File Name はアーカイブされたファイルのファイル名です。
 デフォルトは、アーカイブされる現在のプロジェクト名と同じです。
 拡張子は.gar です。
- 「Create In」は、アーカイブされたファイルの保存パスです。デフォ ルトでは、現在のプロジェクトパスです。
- アーカイブされたプロジェクトの項目には、Project source files(デフ オルトでチェックを入れる)、GowinSynthesis files、PnR files、およ び Programming files が含まれます。
 - Project source files: プロジェクトパス/src の下にあるすべてのフ ァイルが含まれます。
 - GowinSynthesis files: プロジェクトパス/impl/gwsynthesis の下にある、合成後のプロジェクトファイル(*.prj)、ネットリスト・ファイル(*.vg)、合成レポート(*_syn.rpt.html)、リソース統計ファイル(* syn rsc.xml)が含まれます。
 - PnR files: プロジェクトパス/impl/pnrの下にある、配置配線後の ファイルが含まれます。
 - Programming files: プロジェクトパス/impl/pnrの下にある、配置
 配線後のビットストリームファイル*.fs、*.bin、および*.binx が

含まれます。

- アーカイブされたプロジェクトを選択すると、現在のプロジェクトの下にある当該項目のソースファイル、パス、およびサイズが表示されます。
- Add ボタンと Remove ボタンを使用して、アーカイブされたファイル を追加および削除できます。
- Archive をクリックした後、プロジェクト内のファイルが保存されて いない場合、警告メッセージが表示されます。
- アーカイブした後、アーカイブが成功または失敗したことを示すウィンドウがポップアップします。
- アーカイブした後、Create In パスの下に、アーカイブされたプロジェクト*.gar と、gar と同じ名前のアーカイブされたファイル*.garlogの2つのファイルが生成されます。拡張子が.gar のファイルはすべてのアーカイブされたファイルを圧縮したファイルであり、ログファイル*.garlogは、どのファイルが正常にアーカイブされているかを確認できます。

図 4-41 Archive Project ダイアログボックス

eate In: C:/	/Users/jingkun/Desktop/S1_final_p3_t			
File Types				
Project source file	s			
GowinSynthesis file	es			
PnR files				
Programming files	5			
Files				
		Add	Remo	ve
	Name	Si	ze(KB)	^
src\APB_bus_top.v			3	
src\Radar_Pulse_TRX	(.v		39	
src\Radar_Pulse_nea	EV		1	
src\Radar_System_TC	DRv		7	
src\Radar_pulse_TOF	?v		1	
src\S1_final.cst			1	
src\S1_final.gao			6	
src\anh2 decodery			2	
sic(appr_accoucity			1	~
src\config.v				

4.5.2 アーカイブされたプロジェクトの復元

メニューバーProject の「Restore Archived Project」をクリックする と、アーカイブされたプロジェクトの復元のダイアログボックスが表示さ れます(図 4-42)。

SUG100-4.4.2J

図 4-42 Restore Archived Project ダイアログボックス

🐳 Restore Archived	Project	?	×
Archived File: Destination Folder:			
	OK	Ca	ncel

「Archived File」の右側にあるパス選択ボタンをクリックして、復元 したいアーカイブされたファイルを選択します。復元したいアーカイブさ れたファイルを選択すると、「Destination Folder」がアーカイブされたフ ァイルの保存パスに自動的に更新されます。OK をクリックすると、正常 に復元したことを示すダイアログボックスが表示されます。

4.6 ソフトウェアの終了

終了方法は次のとおりです。

- 1. 「File>Exit」オプションをクリックします。
- ソフトウェアインターフェースの右上隅にある「
 アイコンをク リックします。

注記:

- 未保存のファイルがある場合、ファイルを保存するかメッセージが表示されます。
- ソフトウェアでの保存(Save)、すべて保存(Save All)、名前を付けて保存(Save As…)は、テキスト編集についてのことです。
- ソフトウェアによるプロジェクト構成情報の変更またはプロジェクト内のファイルの追加と削除は、プロジェクト構成ファイルにすぐには保存されず、ソフトウェアを閉じると自動的に保存されます。
- ソフトウェアが実行中の場合、上記の方法でソフトウェアを終了できません。

5 Gowin ソフトウェアの統合ツール

5.1 物理制約エディタ

FloorPlanner は GOWIN セミコンダクターが市場向けに独自に研究開 発した物理制約エディタです。I/O、プリミティブ、Block (BSRAM、 DSP)、Group などの属性及び位置情報の読み出しと編集をサポートする と同時に、ユーザーの構成に基づき新しい配置ファイルと制約ファイルを 生成できます。これらのファイルは、I/O の属性情報と位置情報、プリミ ティブや Group の位置情報などを指定しています。FloorPlanner は、シ ンプルで使いやすい配置および制約編集機能を提供して、物理制約ファイ ルの作成の効率を向上させると同時に、デバイスの配置およびタイミング パスに従ってタイミングの最適化を実行できます。

FloorPlanner を起動するには、以下の2つの方法があります:

- FPGA プロジェクトを未作成の場合、ソフトウェアメニューの 「Tools」ドロップダウン・リストから「FloorPlanner」を選択できま す。この場合、File > New…によってネットリスト及び必要なデバイ ス情報をロードする必要があります。
- FPGA プロジェクトの作成時、プロセス管理エリアで合成を実行して 「FloorPlanner」をダブルクリックします。この場合、Floorplanner は プロジェクトファイルをロードし、Floorplanner の GUI に表示しま す。FloorPlanner には、Summary、Netlist、Chip Array、Package View、および各制約ウィンドウがあります(図 5-1、図 5-2)。

注記:

- このツールの使用方法の詳細については、『Gowin 物理制約ユーザーガイド (<u>SUG935</u>)』および『Arora V物理制約ユーザーガイド <u>SUG1018</u>)』を参照して ください。
- また、FloorPlanner によりタイミングの最適化を行うことができます。

🐳 FloorPlanner					_		×
File Constraints Tools View	Help						
🗈 📂 🖶 🛃 🥥 🚽	Q						
Netlist 🗗 🗙	Chip Array 🔀	Package View	X				
<pre>v Summary Netlist</pre> Ports(24) Primitives(10) Primitives(10) Nets(45) Nodule Primiting Paths							~
Message							8>
<pre>> Info (FP0001): Reading devi > Reading netlist file: "D:/test > Parsing netlist file "D:/test > Processing netlist completed > Physical Constraint parsed com</pre>	ce GW2A-18 packag prj/8bit_counter prj/8bit_counter/ pleted	e PBGA484 partnu /impl/gwsynthesi: impl/gwsynthesis,	nber GW2A-LV1; s/8bit_counter /8bit_counter	8PG484C8/I7 r.vg″ vg″ completed			
Me···· I/O C···· Primitive C·	· Group C···	Resource R	Clock …	Quadrant C…	Helk C	Vref	£ C

図 5-1 Chip Array ウィンドウ

図 5-2 Package View ウィンドウ

5.2 タイミング制約エディタ

タイミング制約エディタ(Timing Constraint Editor)は、GOWIN セミ

コンダクターが市場に向けて独自に研究開発したタイミング制約編集ツー ルです。クロック制約、入力出力制約、パス制約、クロックレポート制約 などを含む複数のタイミング制約コマンドの編集をサポートします。 Timing Constraints Editor は、シンプルで便利なタイミング制約編集機能 を提供し、GOWIN セミコンダクターの各 FPGA デバイスをサポートしま す。

Timing Constraints Editor を起動するには、2 つの方法があります。

- FPGA プロジェクトを未作成の場合、メニューで「Tools>Timing ConstraintsEditor」を選択します。この場合、「File > New…」でネッ トリスト・ファイルをロードする必要があります。
- FPGA プロジェクトを作成済みの場合、プロセス管理エリアで合成を 実行して「Timing Constraints Editor」をダブルクリックすると、 Timing Constraints Editor はプロジェクトファイルをロードし、Gowin Timing Constraints Editor インターフェースに表示されます(図 5-3)。

注記:

タイミング制約エディタの詳細については、『Gowin タイミング制約ユーザーガイド (SUG940)』を参照してください。

図 5-3 タイミング制約作成インターフェース

5.3 IP Core Generator

IP Core Generator は、Gowin FPGA に基づく IP(ハードコアとソフト コアを含む)生成ツールです。IP Core Generator を介して設計が生成され た後、ユーザーはそのインスタンス化されたモジュールを利用して設計に 必要な機能を実現し、複雑な設計を実現できるようになります。その主な 機能は次のとおりです(図 5-4)。

- Soft IP core と Hard module 情報のプレビューをサポート。
- Soft IP core と Hard module のカスタマイズをサポート。

- Hard module のインスタンス化のサンプルケースの生成をサポート。
- ユーザーの設定を自動的に保存することをサポート。
- **IP** 生成言語の選択が可能。
- Soft IP の一部は、テストベンチファイルの自動生成をサポート。
- デバイスに応じて利用可能な IP を表示。

図 5-4 IP Core Generator ウィンドウ

Target Device: GW2A-LV18PG484C8/I7				
Filter				
Name				
4 🛅 Hard Module				
D ADC				
🖻 🛅 BandGap				
D CLOCK				
DSP				
> 📒 I3C				
> 🧰 IO				
Memory				
SPMI				
User Flash				
4 🚞 Soft IP Core				
DSP and Mathemathics				
Interface and Interconn				
Memory Control				
Microprocessor System				
Multimedia				
Deprecated				
		-		
💡 Start Page 🛛	Design Summary	3 💧 🔅	IP Core Generator	×
		-		

メニューの Tools ドロップダウン・リストから「IP Core Generator」 をクリックし、IP Core Generator ツールを起動して IP を呼び出します。 その関連ドキュメントは次のとおりです。

- ADC の生成については、『Gowin プリミティブ ユーザーガイド (SUG283)』および『Arora V ADC ユーザーガイド(UG299)』を参照 してください。
- BANDGAP の生成については、『Gowin プリミティブ ユーザーガイド (<u>SUG283</u>)』を参照してください。
- クロックリソースの生成については、『Gowin Clock ユーザーガイド (<u>UG286</u>)』および『Arora V Clock ユーザーガイド(<u>UG306</u>)』を参照し てください。
- DSP の生成については、『Gowin DSP ユーザーガイド(<u>UG287</u>)』および『Arora V DSP ユーザーガイド(<u>UG305</u>)』を参照してください。
- I3C の生成については、『Gowin プリミティブ ユーザーガイド (SUG283)』を参照してください。
- 入出力ロジック(IO Logic)の生成については、『Gowin プログラマ ブル汎用 IO(GPIO)ユーザーガイド(<u>UG289</u>)』および『Arora V プログ

ラマブル汎用 IO(GPIO)ユーザーガイド(<u>UG304</u>)』を参照してください。

- メモリ(BSRAM&SSRAM)の生成については、『Gowin BSRAM & SSRAM ユーザーガイド(<u>UG285</u>)』および『Arora V BSRAM & SSRAM ユーザーガイド(UG300)』を参照してください。
- User Flash の生成については、『Gowin User Flash ユーザーガイド (<u>UG295</u>)』を参照してください。
- SPMIの生成については、『Gowin プリミティブ ユーザーガイド (SUG283)』を参照してください。
- ソフトコア IP のリファレンス・デザイン: https://www.gowinsemi.com/en/support/ip/。

注記:

グレーの Hard Module または Soft IP Core は現在の device にサポートされていません。

5.4 Gowin アナライザオシロスコープ

Gowin アナライザオシロスコープ(GAO)は、GOWIN セミコンダクタ ーが独自に研究開発したデジタル信号解析ツールで、ユーザーが設計内の 信号間のタイミング関係をより簡単に解析し、システムの分析と故障発見 を速やかに実行し、設計効率を高められるよう設計されています。

GAOはRTLレベルの信号キャプチャとネットリストレベルの信号キャプチャをサポートし、Standard版とLite版が提供されています。 Standard GAOは最大 16 の機能コアをサポートします。各コアは1つ以上のトリガポートをサポートし、マルチレベルの静的または動的トリガ式をサポートします。Lite GAOは、トリガ条件を設定する必要がなく、簡単に構成できます。さらに、Lite GAOは信号の初期値もキャプチャできるため、電源投入時の動作状態の分析を容易にしています。キャプチャされた信号の波形をエクスポートできます。*.csv、*.vcd、および*.prnの3つのファイル形式のエクスポートをサポートしています。*.csv と*.prnは、Matlabなどのサードパーティのシミュレーションツールで直接使用できます。*.vcdは、ModelSimで使用できます。

注記:

Matlab または ModelSim を使用するには、対応する承認が必要です。

GAO には Gowin Core Inserter と Gowin Analyzer Oscilloscope の 2 つのツールが含まれています。Gowin Core Inserter は主に位置情報を設 計に挿入することに使用され、これらの位置情報は主にサンプリングクロ ック、トリガユニット、トリガ式を基礎にしています。Gowin Analyzer Oscilloscope は JTAG ポートを通じてソフトウェアとターゲットハードウ ェアに接続し、Gowin Core Inserter の設定したサンプリング信号データ を直感的に波形で表示します。

GAO を起動する前に、プロジェクト管理エリアで GAO 構成ファイ

ル(.gao)を新規作成する必要があります。図 5-5 は Standard 版の GAO の 構成画面です。

図 5-5 GAO 構成ファイルウィンドウ

Trigger Ports	Match Units			Expressions	
Trigger Port 0	Match Unit	Trigger Port	Matc	Static	💮 Dynamic (BSRAM Usage O)
Trigger Port 1	MO.	NONE	B		
Trigger Port 2					
Trigger Port 3	M1	NONE	Ba		
Trigger Port 4	M2	NONE	Ba		
Trigger Port 5	E 142	NONE			
Trigger Port 6	I IVIS	INOINE	Di		
Trigger Port 8	M4	NONE	Ba		
Trigger Port 9	M5	NONE	Ba		
Trigger Port 10	M6	NONE	Ba		
Trigger Port 11 Trigger Port 12	M7	NONE	Ba		
Trigger Port 13					
Trigger Port 14	M8	NONE	Ba		
Trigger Port 15	M9	NONE	Ba		
	M10	NONE	Ba		
	M11	NONE	Ba		
	M12	NONE	Ba		
	M13	NONE	Ba		
	M14	NONE	Ba		
	M15	NONE	Ba		
	< III		F		

構成ファイルの作成後、メニューで「Tools>Gowin Analyzer Oscilloscope」を選択し、オンライン・ロジック・アナライザを開きます (図 5-6)。

注記:

GAO の構成と使用方法については、『Gowin アナライザオシロスコープ ユーザーガ イド(<u>SUG114</u>)』を参照してください。

図 5-6 GAO の GUI

🙆 Gowin Ana	alyzer Oscilloscope						- 0	×			
🛅 Cable:	Gowin USB Cable(FT	2СН) 🔻 🜔 🤅) (1) (1) (4)	l Q Q [
Configuration	ı										
Programmer	rogrammer										
Ao Core	Core O										
Core	Capture										
	Storage Size: 10	24 Win	low Number: 1	▼ Capture	Amount: 1024 🔻	Trigger Positi	on: 0	•			
	Trigger Expressio	ons									
	exp0: M0										
	Match Unit										
	Match Unit	Trigger Port	Match Type	Function	Counter		Value				
	MO	Trigger 0	Basic	==	Disabled		00000000				
< >	<							>			

5.5 Gowin パワーアナライザ

GOWIN パワーアナライザ(GPA)は、豊富な設定オプションによって できる限り正確な電力解析を提供します。ユーザーは、プロジェクトの実 際の状況に基づき、消費電力に影響するチップの型番、動作環境、信号の トグルレートなどのパラメータを設定することができます。パワーアナラ イザはこれらのパラメータに基づき、ユーザーデザインの消費電力を自動 的に予測し、電力解析レポートを生成します。

現在、GPA ツールの起動はまず構成ファイル(.gpa)の新規作成を基礎 としています。以下はその手順です。

- 1. ソフトウェアのプロジェクト管理エリア(Design)で「File>New…」を クリックし、「New」ダイアログを開きます。
- 2. 「GPA Config File」を選択し、ポップアップするダイアログボックス に「Name」を入力します。
- 3. 「OK」をクリックすると、「Design」ウィンドウに新規作成された GPA Config File が表示されます。
- ファイル名をダブルクリックし、ソースファイル編集エリアで GPA 構成ファイルを構成することができます(図 5-7)。

注記:

GPA の構成と使用法については、『Gowin パワーアナライザ ユーザーガイド (SUG282)』を参照してください。 図 5-7 GPA 構成ファイルウィンドウ

General Setting Rate Setting Clock Setting
Operating Conditions
Grade: COMMERCIAL Process: TYPICAL
Environment
Ambient Temperature: 25.000℃
□ Custom Theta JA: 25.000°C/W 🗼
Heat Sink
None O Low Profile O Medium Profile O High Profile O Custom
Air-flow: 0 • (LFM)
Custom Theta SA: 25.000°C/W
Board Thermal Model
None Custom Typical
Board Temperature: 25.000℃ (-40℃-100℃)
Custom Theta JB: 25.000°C/W 🔹
Voltage
VCC: 1.000V
VCCX: 2.500V
Start Dans 🔲 Davies Summany 🖾 🦂 ID Care Consustan 🕅 🎎 :
🐺 start raye 🔤 🛛 Design summary 🖾 📢 IP Core Generator 🖾 🗰 🐼 test.gpa 🔯

5.6 メモリ初期化ファイルエディタ

メモリ初期化ファイルはASCIIファイルで、拡張子は.miです。ユー ザーは、必要に応じて、メモリの各アドレスにある初期値を指定するため の、対応形式の初期化ファイルを生成することができます。すでに.miフ ァイルがある場合は、IDEでメモリ初期化ファイルエディタを使用し て.miファイルを開き、再度編集して保存できます。

メモリ初期化ファイルのファイル名は*.mi(file_name.mi)で、ファイ ルの1行は1つのメモリユニットを表します。行の数はメモリユニット の数で、メモリのアドレス深さ(Address Depth)を表します。列の数は各 メモリユニットのビット数、つまりメモリのデータ幅(Data Width)を表し ます。アドレスは上から下に順番に増え、各データは上位が前、下位が後 にあります。

Gowin のメモリ初期化ファイルの編集は、新規作成される.miファイルに基づきます。詳しくは、『Gowin BSRAM & SSRAM ユーザーガイド(UG285)』および『Arora V BSRAM & SSRAM ユーザーガイド(UG300)』を参照してください。初期化ファイルエディタの具体的な手順は次のとおりです。

- 1. ソフトウェアのプロジェクト管理エリア(Design)で「File>New…」を クリックし、「New」ダイアログを開きます。
- 「Memory Initialization File」を選択します(図 5-8)。「OK」をクリックし、ポップアップする New File ダイアログボックスで初期化ファイル名を入力して「OK」をクリックします(図 5-9)。
- 3. 図 5-10 のような初期化ファイル構成画面を起動し、ウィンドウの左 側の表に初期値を入力し、右側で初期化ファイルのサイズとビュー形 式を構成します。
- 4. 構成画面の右側で初期化ファイルの Depth と Width を構成し、左側の 表でアドレスと初期値の数値表示形式を構成します。
 - Depth と Width は、ユーザーが IP Core Generator ウィンドウで 選択した Block Memory または Shadow Memory の Address Depth 及び Data Width と一致させる必要があります。初期化ファ イルの Address Depth または Data Width がウィンドウで選択し た値より大きい場合、IP Core Generator はエラーメッセージを表 示します。ウィンドウで選択した値より小さい場合、未指定のア ドレスの値がデフォルトで0に初期化されます。設定後、 「Update」をクリックします。
 - 左側の表のアドレスと数値は、バイナリ、16進数、アドレス付き 16進数などの形式で表示できます。
- 5. 構成画面の左側の表に初期値を入力します。この表では、表のビュー 形式も設定できます。表のヘッダを右クリックすると、列数の表示を 構成できます。
 - 1、8、16の3つから選択できます(図 5-11)。
 - 表の初期値は、ダブルクリックして手入力するか、右クリックすることで設定できます。値を入力する場所を右クリックして、「Fill with 0」は、初期値の各ビットを0にすることを表し、「Fill with 1」は初期値の各ビットを1にすることを表します。
 「Custom Fill」の場合、ユーザーは必要に応じて数を入力するか、初期値を一括設定できます(図 5-12)。
- 6. ファイルを保存します。

🗱 New	?	×
 Physical Constraints File Timing Constraints File GowinSynthesis Constraints File User Flash Initialization File 		^
GAO Config File		~
Create memory initialization file.		
ОК	Can	cel

図 5-9 New File ダイアログボックス

😽 New File	9	?	×
Name:	test	.mi	•
Create in:	D:\idePrj\8bit_counter\src	Brows	e
	OK	Canc	el

図 5-10 初期化ファイル構成ウィンドウ

🔰 D:\gowii	nTask\testIDE\gprj\	fpga_project_4\src\	testt.mi					
	+0	+1	+2	+3	+4	+5	^	File
00000000	00	00	00	00	00	00		File Format: Bin 💌
00001000	00	00	00	00	00	00		Depth: 256 🗘
00010000	00	00	00	00	00	00		Width: 8
00011000	00	00	00	00	00	00		Update
00100000	00	00	00	00	00	00		View
00101000	00	00	00	00	00	00		Address Base: Bin 💌
00110000	00	00	00	00	00	00		Value Base: Hex 👻
00111000	00	00	00	00	00	00		
01000000	00	00	00	00	00	00		
01001000	00	00	00	00	00	00		
01010000	00	00	00	00	00	00		
01011000	00	00	00	00	00	00	1	
01100000	00	00	00	00	00	00		
01101000	00	00	00	00	00	00		
01110000	00	00	00	00	00	00		
01111000	00	00	00	00	00	00		
10000000	00	00	00	00	00	00		
10001000	00	00	00	00	00	00		
10010000	00	00	00	00	00	00		
10011000	00	00	00	00	00	00	•	
<						>		

図 5-11 列数の構成

1						-				
	+0	+1	+2	+3	+4	+5	+0	+1		1 Column
0000000	00	00	00	00	00	00	00	00	•	8 Column
00001000	00	00	00	00	00	00	00	00		16 Column

図 5-12 一括設定

	+0	+1	+2	+3	+4	+5	+6	+7
0000000	00	00	00	00	00	00	00	00
00001000	00	00		00		00		
00010000	00	00		00		00		
00011000	00	00		00		00		
00100000	00	00	00	00	00	00	00	00
00101000	00	00	00	00	00	00	00	00
00110000	00	00	00	00	00	00 Fill w	ith 0	00
00111000	00	00		00		00 Fill w	ith 1	
0100000	00	00		00		00 Custo	om Fill	
01001000	00	00	00	00	00	00	00	00

5.7 User Flash 初期化ファイルエディタ

User Flash 初期化ファイルは ASCII ファイルで、拡張子は.fi です。 ユーザーは、必要に応じて、User Flash の各アドレスにある初期値を指 定するための、対応形式の初期化ファイルを生成することができます。す でに.fi ファイルがある場合は、ソフトウェアで User Flash 初期化ファイ ルエディタを使用して.fi ファイルを開き、再度編集して保存できます。

User Flash 初期化ファイルのファイル名は*.fi(file_name.fi)で、ファイルの1行は1つのメモリユニットを表します。行の数はメモリユニットの数です。行頭の角括弧内の内容は、セミコロンで区切られた縦座標アドレスと横座標アドレスです。各行の角括弧の後の内容は、メモリユニットの初期化データです。2進数と16進数のデータをサポートします。各データの上位が前、下位が後になります。.fiファイルの形式の例は次のとおりです。

5.7.1 2 進数形式(Bin File)

Bin ファイルはバイナリ数0と1から成るテキストファイルです。

//Copyright (C)2014-2024 Gowin Semiconductor Corporation.

//All rights reserved.

//File Title: User Flash Initialization File

//Tool Version: V1.9.10(64-bit)

//Part Number: GW1N-LV4PG256C6/I5

//Device-package: GW1N-4-PBGA256

//Device Version: D

//Flash Type: FLASH256K

//File Format: Bin

//Created Time: 2024-06-28 14:31:12

[0:0] 000000000010000001000100010000

 $[1:1]\ 000000000010001000100000000001$

5.7.2 16 進数形式(Hex File)

Hex ファイルは Bin ファイル形式と類似し、そのデータは 16 進数 の 0~F で構成されます。

//Copyright (C)2014-2024 Gowin Semiconductor Corporation.

//All rights reserved.

//File Title: User Flash Initialization File

//Tool Version: V1.9.10 (64-bit)

//Part Number: GW1N-LV4PG256C6/I5

//Device-package: GW1N-4-PBGA256

//Device Version: D

//Flash Type: FLASH256K

//File Format: Hex

//Created Time: 2024-06-28 14:41:24

[0:0] 00101110

[1:1] 00111001

GOWIN User Flash 初期化ファイルの編集は、新規作成される.fi ファイルに基づきます。以下は、初期化ファイルエディタの使用手順です。

- 1. ソフトウェアのプロジェクト管理エリア(Design)で「File>New…」を クリックし、「New」ダイアログを開きます。
- 「User Flash Initialization File」を選択します(図 5-13)。「OK」をクリ ックし、ポップアップする New File ダイアログボックスで初期化フ ァイル名を入力した後、デバイスを選択して「OK」をクリックしま す(図 5-14)。そのうち.fi ファイルのデフォルトパスはプロジェクトデ ィレクトリの src フォルダです。現在、User Flash 初期化ファイルエ ディタでサポートされているデバイスは、User Flash プリミティブで サポートされているデバイス情報と一致しています。User Flash をサ ポートしていないデバイスが選択された場合、「Current device do not support flash」というメッセージがダイアログボックスの下部に表示 されます。

図 5-13 初期化フ	'ァイルの新規作成
-------------	-----------

🗱 New	?	×
 Timing Constraints File GowinSynthesis Constraints File User Flash Initialization File GAO Config File GVIO Config File 		^
Memory Initialization File		~
Create a User Flash Initialization File *.fi.		
ОК	Can	cel

図 5-14 New File ダイアログボックス

🐝 New File	•	?	\times
Name:	test	.fi	•
Create in:	D:\idePrj\8bit_counter\src	Browse	
Device:	Select a device	Select D	evice
	ОК	Cano	el

3. 図 5-15 のような初期化ファイル構成画面を起動し、ウィンドウの左 側の表に初期値を入力し、右側で初期化ファイルのサイズとビュー形 式を構成します。また、Part Number 情報および User Flash のモデ ルも確認できます。

図 5-15 初期化ファイル構成ウィンドウ

	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+10	+11 ^	PartNumber
0000	0000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	0000000	GW1N-LV4QN32C6/I5
0040	00000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	00000000	User Flash
0080	0000000	0000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	00000000	FLASH256K
00c0	0000000	00000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	0000000	0000000	File
0100	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	Address: 128 * 64
0140	0000000	00000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	View
0180	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	Value Base: Hex 🔻
01c0	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	Address Base: Hex 🔻
0200	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	00000000	0000000	0000000	
0240	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	
0280	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	
02c0	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	
0300	0000000	00000000	0000000	0000000	00000000	0000000	0000000	00000000	00000000	0000000	0000000	00000000	
0340	0000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	
0380	0000000	00000000	00000000	0000000	00000000	0000000	0000000	00000000	00000000	0000000	00000000	00000000	
03c0	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	00000000	
0400	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	
0440	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	0000000	
0480	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	
04c0	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	0000000	
•													
			te	est. fi			×						

- 4. 構成画面の右側でチップの型番、初期化ファイルの形式を構成し、左 側の表でアドレスと初期値の数値表示形式を構成します。
 - Part Number 情報をクリックすると、「Select Device」ダイアログ ボックスがポップアップし、別の型番を選択できます。
 - 左側の表でアドレスと数値の表示形式をバイナリ、8進数、10進数、16進数などの形式から選択できます。
- 5. 構成画面の左側の表に初期値を入力します。この表では、表のビュー 形式も設定できます。表の初期値は、ダブルクリックして手入力する か、右クリックすることで設定できます。値を入力する場所を右クリ ックして、「Fill with 0」は、初期値の各ビットを0にすることを表 し、「Fill with 1」は初期値の各ビットを1にすることを表します。 「Fill Custom」の場合、ユーザーは必要に応じて数を入力するか、初 期値を一括設定できます(図 5-16)。

図 5-16 一括設定

	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+10	+11	1
0000	0000000				0000000				0000000	0000000	0000000	00000000	
0040	0000000								0000000	0000000	0000000	00000000	=
0080	0000000			0000000	0000000	0000000			0000000	0000000	0000000	00000000	
00c0	0000000			0000000	0000000	0000000			0000000	0000000	0000000	00000000	
0100	0000000			0000000	0000000	0000000		00000000		0000000	0000000	00000000	
0140	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	Fill With 1	0000000	0000000	00000000	
0180	0000000	0000000	0000000	0000000	00000000	0000000	0000000	00000000	Fill Custom	0000000	0000000	00000000	
01c0	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000	0000000	00000000	

6. ファイルを保存します。

5.8 回路図ビューア

回路図ビューア(Schematic Viewer)を使用することでデザインの論理 構造を直感的に理解できます。Schematic Viewer(RTL Design Viewer と Post-Synthesis Netlist Viewer を含む)は、加算器、乗算器、レジスタ、 AND ゲート、NOT ゲート、インバータなど、一般的な回路図記号を使用 します。

メニューバーの「Tools」ドロップダウン・リストから「Schematic Viewer-RTL Design Viewer」または「Schematic Viewer-Post-Synthesis Netlist Viewer」をクリックすると、それぞれ RTL 設計の回路図または合 成後ネットリストの回路図が表示されます。「RTL Design Viewer 」ウィ ンドウと「Post-Synthesis Netlist Viewer」ウィンドウは、それぞれ図 5-17 と図 5-18 に示すとおりです。

Schematic Viewer のツールバーには、戻る「…」、進む「…」、ズー ムイン 「、ズームアウト「、、ズームフィット「、」、トップレベ ルビュー 「」、アッパーレベルビュー「」、リロード「」、および検 索「、」があります。Modules、Ports、Nets、Primitives、および Black Boxes など、デザインを構成する論理要素がウィンドウの左側に表示され ます。

注記:

Schematic Viewer の詳細については、『Gowin HDL 回路図ビューア ユーザーガイド (SUG755)』を参照してください。

5.9 仮想入出力デバッグ・ツール

Gowin 仮想入出力(GVIO)コアは、内部 FPGA 信号をリアルタイムで 監視および駆動できるカスタマイズ可能なコアです。その入力ポートは、 FPGA 信号の監視に使用され、仮想 LED に相当します。その出力ポートは、FPGA 信号の駆動に使用され、仮想スイッチに相当します。

GVIO を起動する前に、プロジェクト管理エリアで GVIO 構成ファイルを新規作成する必要があります。GVIO 構成ファイルの画面は図 5-19 に示すとおりです。

図 5-19 GVIO 構成ファイルウィンドウ

注記:

Gowin 仮想入出力(GVIO)コアの構成と使用については、『Gowin Virtual Input Output ツール ユーザーガイド(<u>SUG1189</u>)』を参照してください。

5.10 アイ・ダイアグラム分析ツール GoBert

アイ・ダイアグラム分析ツール GoBert は、Gowin が独自に開発し た、SerDes 受信信号のアイ・ダイアグラムを解析するツールです。この ツールは、ユーザーが SerDes 受信品質を解析し、ユーザーデザインのパ フォーマンスと信頼性を向上できるように設計されています。GoBert を 使用して受信信号の品質をテストするには、開発ボードに顧客のプログラ ムをロードする必要があります。アイ・ダイアグラム・テストは、顧客の プログラムが正常に実行できる場合にのみ開始できます。

Gowin ソフトウェアのツールバー > 「④」またはメニューバー > 「Tools」 > 「④」をクリックして、GoBert ウィンドウを起動します(図 5-20)。

図 5-20 GoBert ウィンドウ

注記:

GoBert の構成と使用法については、『**Gowin GoBert** ツール ユーザーガイド (<u>SUG1198</u>)』を参照してください。

6ファイルの出力

Gowin ソフトウェアは、FPGA 設計プロセスにおいてビットストリ ームファイルに加えて、ユーザーの参考として、さまざまなレポートを生 成することができます。デフォルトで生成されるレポートには、合成レポ ート、配置配線レポート、ポート属性レポート、タイミングレポート、お よび電力解析レポートなどがあります。また、ユーザーは Place & Route を右クリックし、構成オプションを変更してピン制約ファイル、タイミン グシミュレーション・モデルファイルなどを生成できます。

6.1 合成レポート

GowinSynthesis による合成が完了すると、対応する合成レポートと ネットリスト・ファイルが生成されます。

Synthesis Message、Synthesis Details、Resource、Timing を含む、 *_syn.rpt.html という合成レポートが生成されます(図 6-1)。

図 6-1 GowinSynthesis の合成レポート

Synthesis Messages	S	ynthesis Details
Synthesis Details	Top Level Module	counter1
 Resource Resource Usage Summary Resource Utilization Summary Timing Clock Summary Max Frequency Summary Detail Timing Paths Informations 	Synthesis Process	Running parser: CPU time = 0h 0m 0.109s, Elapsed time = 0h 0m 0.121s, Peak memory usage = 74.734MB Running netlist conversion: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 0MB Running device independent optimization: Optimizing Phase 0: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Optimizing Phase 1: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Optimizing Phase 2: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Running inference: Inferring Phase 0: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Inferring Phase 1: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Inferring Phase 2: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Inferring Phase 2: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Inferring Phase 2: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Inferring Phase 3: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Tech-Mapping Phase 0: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Tech-Mapping Phase 3: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Tech-Mapping Phase 3: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Tech-Mapping Phase 3: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Tech-Mapping Phase 3: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Tech-Mapping Phase 3: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB Tech-Mapping Phase 3: CPU time = 0h 0m 0.045s, Elapsed time = 0h 0m 0.095s, Peak memory usage = 73.988MB Tech-Mapping Phase 4: CPU time = 0h 0m 0s, Elapsed time = 0h 0m 0s, Peak memory usage = 74.734MB

SUG100-4.4.2J

レポートの左側には、以下に示すように、特定のインデックス情報が 表示されます。

- Synthesis Message: 合成レポートの基本情報。主に、合成されたデ ザインファイル、制約ファイル、ソフトウェアのバージョン番号、デ バイス情報、レポート作成時間、および法的通知に関する情報が含ま れます。
- Synthesis Details:設計ファイルのトップ・モジュール、合成の各サブステージの実際の実行時間, CPU 実行時間,ピークメモリ使用量、 合成全体 CPU 実行時間とピークメモリ使用量。
- Resource : リソース使用量の情報。
- Timing: Clock Summary、Max Frequency Summary、Detail Timing Paths Informations などの情報を含むタイミング解析レポート。

6.2 配置配線レポート

配置配線レポートには、ユーザーデザインが占有するチップリソース 情報、メモリ使用情報、時間使用情報などが記載されます。これにより、 ユーザーはデザインのサイズと、ターゲットチップと一致するかどうかを 確認できます。ファイルの拡張子は.rpt.html で、詳細は*.rpt.html ファイ ルを参照してください。

ユーザーはプロセス管理エリアの Place & Route エリアで、「Place & Route Report」をクリックすると、FPGA プロジェクトに対応する配置配線レポートを開きます(図 6-2)。

図 6-2 Place & Route Report

		PnR Details				
 PnR Messages PnR Details Resource Resource Usage Summary I/O Bank Usage Summary Global Clock Usage Summary Global Clock Signals Pinout by Port Name 	Place & Route Process	Running placement: Placement Phase 0: CPU time = 0h 0 Placement Phase 2: CPU time = 0h 0 Placement Phase 2: CPU time = 0h 00 Placement Phase 3: CPU time = 0h 0m 1 Total Placement: CPU time = 0h 0m 0 Routing Phase 1: CPU time = 0h 0m 0 Routing Phase 2: CPU time = 0h 0m 0.2 Generate output files: CPU time = 0h 0m 25, Elapsed time = CPU time = 0h 0m 25, Elapsed time =	2 = 0h 0m 0.004s, Elapsed time = (2 = 0h 0m 0.263s, Elapsed time = (2 = 0h 0m 0.002s, Elapsed time = (2 = 0h 0m 0.8s, Elapsed time = 0h 0h 0m 1s, Elapsed time = 0h 0m 1 0h 0m 0.189s, Elapsed time = 0h 0h 0m 0.022s, Elapsed time = 0h 0m 0.271s, Elapsed time = 0h 0m 0m 0.271s, Elapsed time = 0h 0m 20 m 0m 0m 25 m 0m 25			
• All Package Pins	Total Time and Memory Usage	CPU time = 0h 0m 3s, Elapsed time = 0	h 0m 3s, Peak memory			
	Resource Usage Sum	Resource				
	Resource	Usage	Utilization			
	Logic	10/20736	1%			
	LUT,ALU,ROM16	10(3 LUT, 7 ALU, 0 ROM16)	-			
	SSRAM(RAM16)	0	-			
	Register	8/16683	1%			

配置配線レポートの左側には、以下に示すように、特定のインデック ス情報が表示されます。

- PnR Messages: 配置配線レポートの概要情報。レポート名、設計例 のパスと名前、物理制約ファイル、タイミング制約ファイル、ソフト ウェアバージョン番号、デバイス情報、レポート作成時間、法的声明 など。
- PnR Details :
 - 配置の各段階で費やされた時間と配置の合計時間。プロジェクト に GAO がある場合は、GAO 配置の時間が含まれます。
 - 配線の各段階で費やされた時間と配線の合計時間。プロジェクト に GAO がある場合は、GAO 配線の時間が含まれます。
 - 出力ファイルの作成にかかる時間。
- **Resource**:以下の項目が含まれます:
 - Resource Usage Summary: ユーザーデザインのリソース使用量 情報。
 - I/O Bank Usage Summary: ユーザーデザインで使用される I/O Bank の情報。
 - Global Clock Usage Summary: ユーザーデザイン使用されるグロ ーバル・クロック情報。
 - Global Clock Signals: ユーザーデザインで使用されるグローバル・クロック信号。
 - Pinout by Port Name:ポートに対応するピンアウト情報。
 - All Package Pins:現在のパッケージのすべてのピン。

プロジェクトに GAO がある場合は、GAO Resource Usage Summary が含まれます:ユーザーデザインの GAO のリソース使用量 情報。

6.3 ポート属性レポート

ポート属性レポートは、配置後に出力されるポート属性のファイル で、ポートのタイプ、属性、ポート位置情報などが含まれます。生成され るファイルの拡張子は.pin.html で、詳細については*.pin.html ファイルを 参照してください。

ユーザーは、プロセス管理エリアの Place & Route エリアで「Ports & Pins Report」をダブルクリックし、FPGA プロジェクトに対応するポート属性レポートを開くことができます(図 6-3)。

		Pi	n	Deta	ils						
 Pin Messages Pin Details 	Pinout by Port Name	:									
o Pinout by Port Name	Port Name	Diff Pair	Lo	c./Bank	Constraint	Dir.	Site	IO Type	Driv	e Pull Mode	PCI
All Package Pins	clk		L1/	7	N	in	IOL25[A]	LVCMOS:	L8 OFF	DOWN	OFF
	cout[0]		M2	/7	N	out	IOL25[B]	LVCMOS:	18 8	NONE	OFF
	cout[1]		F6/	8	N	out	IOL3[A]	LVCMOS:	18 8	NONE	OFF
	cout[2]		G7,	/8	Ν	out	IOL3[B]	LVCMOS:	8 8	NONE	OFF
	cout[3]		D3	/8	N	out	IOL2[A]	LVCMOS	18 8	NONE	OFF
	cout[4]		D4	/8	N	out	IOL2[B]	LVCMOS:	8 8	NONE	OFF
	cout[5]		A2/	/0	N	out	IOT2[B]	LVCMOS:	8 8	NONE	OFF
	cout[6]		E6,	/0	Ν	out	IOT3[A]	LVCMOS	8 8	NONE	OFF
	cout[7]		F5/	/8	Ν	out	IOL4[B]	LVCMOS:	8 8	NONE	OFF
	All Package Pins:	Signal	Dir.	Site	ІО Туре	Dr	ive Pull I	Mode PC	Clamp	Hysteresis	Оре
	B1/0	-	out	IOT2[A]	LVCMOS1	8 8	NONE	OFF	:	OFF	ON
	A2/0	cout[5]	out	IOT2[B]	LVCMOS1	8 8	NONE	OFF		OFF	OFF
	E6/0	cout[6]	out	IOT3[A]	LVCMOS1	8 8	NONE	OFF		OFF	OFF
	F7/0	-	out	IOT3[B]	LVCMOS1	8 8	NONE	E OFF		OFF	ON
	B2/0	-	out	IOT4[A]	LVCMOS1	8 8	NONE	OFF		OFF	ON
	A3/0	-	out	IOT4[B]	LVCMOS1	8 8	NONE	OFF		OFF	ON

🗵 6-3 Ports & Pins Report

ポート属性レポートの左側には、インデックス情報が表示されます。

- Pin Messages: ポート属性レポートの概要情報。レポート名、設計例のパスと名前、物理制約ファイル、タイミング制約ファイル、ソフトウェアのバージョン番号、デバイス情報、レポート作成時間、法的通知など。
- Pin Details:以下の項目が含まれます:
 - Pinout by Port Name:ポートに対応するピンアウト情報。
 - All Package Pins: 現在のパッケージのすべてのピン。

注記:

GW1N-1P5/GW1N-2/GW1NR-2 および GW2AN-18X/GW2AN-9X 以外のデバイスで は、Bank V_{CCIO}の制約を追加しないと、一部のシングルエンド入力ポートの IO Type に対応する電圧値は、ポート属性レポートの Bank V_{CCIO}の値と一致しない場合 があります(これは正常です)。例えば、レポート内の IO Type は LVCMOS18(電圧値 1.8 に対応)ですが、Bank V_{CCIO} は 1.2 です。

6.4 タイミングレポート

タイミングレポートは、回路のネットリストに全面的な解析を行い、 回路のタイミングパス遅延を計算し、要件を満たすか判断します。タイミ ングレポートには、セットアップ時間チェック、ホールド時間チェック、 リカバリ時間チェック、リムーバル時間チェック、最小クロックパルスチ ェック、最大ファンアウトパス、配線密集レベルレポートなどが含まれま す。デフォルトでは上記のすべてのチェックについて報告するほか、最大 周波数のレポートも提供します。

ユーザーは、プロセス管理エリアの Place & Route エリアで「Timing Analysis Report」をダブルクリックし、FPGA プロジェクトに対応するタ イミングレポートを開くことができます(図 6-4)。

注記:

タイミングレポートの詳細については、『Gowin タイミング制約ユーザーガイド (<u>SUG940</u>)』を参照してください。

図 6-4 タイミングレポート内容

Timing Messages Timing Summaries				Tir	ning S	umr	nari	es			
STA Tool Run Summary Clock Summary	STA	Fool Run	Sum	mary	1						
Max Frequency Summary	Setup Delay Model			Slow 1.14V 0C C2/I1							
Total Negative Slack Summary	Hold Delay Model			Fast 1.26V 85C C2/I1							
Timing Details	Numbers of Paths Analyzed			34							
Path Slacks Table	Numbers of Endpoints Analyzed			34							
Setup Paths Table	Numbers of Falling Endpoints			0							
Hold Paths Table	Numbers of Hold Violated Endpoints			0							
Recovery Paths Table	Numbe			points	0						
Removal Paths Table	Clock	Summar	y:								
Minimum Pulse Width Table	NO	Clock Name	Type	Perio	d Frequenc	v(MHz)	Pico	Fall	Source	Master	Objects
Timing Report By Analysis Type	1	clk0	Base	5 000	200.000	y(MILZ)	0.000	2 500	Source	Huster	clk
Setup Analysis Report	· ·	CIKO	Dase	5.000	200.000		0.000	2.500			CIK
Hold Analysis Report	Max	Frequenc	y Su	mmai	y:						
Recovery Analysis Report	NO	Clock Nar	ne	Cor	straint	Act	ual Ema	x	Logic Le	evel	Entity
Removal Analysis Report	1	1 clk0 200.00		200.000	(MHz) 502,512(MHz)		4	4		ТОР	
Minimum Pulse Width Report	•										•

6.5 消費電力解析レポート

電力解析レポートは、主にユーザーデザインのために提供されます。 電力解析の際、デバイスの特性に基づいて推定消費電力計算が行われま す。これにより、ユーザーがデザインの基本的な消費電力値を評価できま す。

ユーザーは、プロセス管理エリアの Place & Route エリアで「Power Analysis Report」をダブルクリックし、FPGA プロジェクトに対応する電 力解析レポートを開くことができます(図 6-5)。

注記:

電力解析の詳細については、『Gowin パワーアナライザ ユーザーガイド(<u>SUG282)</u>』 を参照してください。

図 6-5 電力解析レポート

 Power Messages Configure Information Power Summary 	Power Inforn	nation:	Power Sum	nmary		
Power Information	Total Power (mW)		114.700			
 Thermal Information 	Quiescent Power (mV	V)	107.176			
 Supply Information 	Dynamic Power (mW))	7.524			
 Power By Block Type Power By Hierarchy Power By Clock Domain 	Junction Temperature Theta JA Max Allowed Ambient	rmation : : Temperature	28.570 31.122 28.430			
	Supply Inform	nation:			Downo(milit)	
			1 258	S5 080	57 247	
	VCCX	3.300	1.232	15.000	53.566	
	VCCIO18	1.800	1.222	0.937	3.887	

SUG100-4.4.2J

7 シミュレーションファイル

Gowin ソフトウェアは、シミュレーション用の入力ファイルを提供し ます。シミュレーションには、機能シミュレーションとタイミングシミュ レーションがあります。機能シミュレーションは、プレレイアウト・シミ ュレーションとも呼ばれます。機能シミュレーションの主な目的は、回路 の機能が設計要件を満たしているかどうかを確認することです。その特徴 は、回路のゲート遅延や配線遅延を考慮しないことです。

タイミングシミュレーションは、ポストレイアウト・シミュレーショ ンとも呼ばれます。タイミングシミュレーションでは、回路がマッピング された後、回路のパス遅延とゲート遅延が包括的に考慮され、回路が特定 のタイミング条件下で設計に適合しているかどうかが検証されます。

7.1 機能シミュレーションファイル

機能シミュレーションには、合成前のユーザーRTL 設計機能シミュレ ーションと合成後の論理ネットリスト機能シミュレーションが含まれま す。必要なファイル(Verilog でのデザインの場合)は、合成前のユーザー設 計 RTL ファイル、合成後のネットリスト・ファイル(*.vg)、テストベン チファイル(testbench)* tb.v、および機能シミュレーション・ライブラ リ・ファイル prim sim.v です。

注記:

- シミュレーション・ライブラリ・ファイルのパス: installPath¥IDE¥simlib。
- VHDL を使用した場合、シミュレーション・ライブラリ・ファイルは prim_sim.vhd です。
- 生成されるソフトコア IP は暗号文であるため、デザインにソフトコア IP が含 まれている場合、ソフトコア IP 生成後の.vo/.vho ファイルを機能シミュレーシ ョンファイルとして使用する必要があります。.vo/.vho ファイルは現在のプロジ ェクトディレクトリ src¥ipName にあります。

7.2 タイミングシミュレーションファイル

タイミングシミュレーションに必要なファイル(Verilog を使用する場合): ソフトウェアによって生成された Verilog タイミングシミュレーション論理ネットリスト・ファイル*.vo、対応する遅延ファイル*.sdf、対応

するテストベンチファイル* tb.v、およびタイミングシミュレーション・ ライブラリ・ファイル prim_tsim.v です。

注記:

sdfファイル内の遅延データの時間精度は1psです。

タイミングシミュレーション論理ネットリスト・ファイル*.vo および 遅延ファイル*.sdf は、Gowin ソフトウェアの GUI を介してプロジェクト を実行することで生成できます。その手順は次のとおりです。

 プロジェクトを作成/開いた後、Project > Configuration > Place & Route オプションで「Generate SDF File」と「Generate Post-PNR Verilog Simulation Model File」の値を True に設定し、「OK」をクリッ クします(図 7-1)。

図 7-1 オプションの構成

🐳 Configuration		×
	Place & Route	
 Global Voltage General Synthesize General Place & Route 	Category: All Label Generate SDF File Generate Post-Place File Generate Post-PnR Verilog Simulation Model File	Reset all to default Value True False True
General Place Route Dual-Purpose Pin Unused Pin ♥ BitStream General sysControl	Generate Post-PnR VHDL Simulation Model File Generate Plain Text Timing Report Promote Physical Constraint Warning to Error Show All Warnings Report Auto-Placed IO Information	False False True False False
Feature sysControl	Generate post-PnR Verilog simulation model file. I	Default: *.vo.

2. Place&Route を実行します。正常に実行された後、プロジェクトのパスの下の impl/pnr/に必要な vo ファイルと sdf ファイルが現れます。

8 Tcl コマンドの説明

Gowin ソフトウェアは、コマンド・ライン・モードでの実行をサポート します。以下の説明では、山括弧<>に含まれているコンテンツは必須コン テンツであり、角括弧[]に含まれているコンテンツはオプションのコンテン ツです。「/」、「*」、「-」、スペースなどの特殊文字を含むファイル名はサポー トされていません。数字で始まる IP module_name はサポートされていません。

8.1 コマンド・ライン・モードを開始

8.1.1 gw_sh.exe

構文

コマンド:例えば、Windowsの場合、インストール・ディレクトリの¥x.x¥IDE¥bin¥gw_sh.exeを起動します。

パラメータ:

[script file]

パラメータなし:コマンドラインコンソール・モードに直接入ります。

script file:指定されたスクリプトファイルを実行します(オプション)。

応用例

#コマンド・ライン・モードを開始

gw_sh.exe

#スクリプトファイルを実行します。具体的な例については、『Gowin ソフトウェア クイックスタートガイド(<u>SUG918)</u>』の「Tcl コマンドのク イックスタート」セクションを参照してください。

gw_sh.exe script_file

8.2 コマンド

8.2.1 コマンドの分類

<u>IPFlow</u>

Project

8.2.2 コマンド一覧

IPFlow :

create ipc generate target get ips list property read_ipc report property set property source write ip tcl **Project:** add_file create project

import_files

open_project

<u>rm file</u>

<u>run</u>

run close

<u>saveto</u>

set_device

set_file_enable

set file prop

set_option

source

8.3 コマンドの説明

8.3.1 add_file

プロジェクトに追加される設計ファイルを指定します。

構文

add_file [-type] [-disable] [-h/--help] <file>

形式

名称	説明
[-type]	追加される設計ファイルのタイプ
[-disable]	無効な状態に設定します
[-h/help]	ヘルプ情報を表示します
<file></file>	追加されるファイル

分類

Project

説明

設計ファイルを追加します。Windows と Linux オペレーティングシス テムは、/または¥¥の2つのファイルパスの区切り文字をサポートしま す。相対パスと絶対パスをサポートします。相対パスは、Gowin ソフト ウェア GUI では現在プロジェクトのパスを基準にしており、コマンド・ ライン・モードでは gw_sh.exe が起動された際のパスを基準にしていま す。

パラメータ

- <file>: 追加したい設計ファイル。複数指定できます(スペースで区切ります)。
- [-type <type>]: add_file コマンドは、ファイルのサフィックスに基づいてファイルタイプを自動的に決定できますが、このオプションを使用してファイルタイプを直接に指定することもできます。サポートされているファイルタイプ: verilog、vhdl、sv、vg、cst、sdc、gao、gpa、gsc など。
- -disable: 追加したファイルを無効にします。無効な状態のファイル はファイルリストに追加されるだけで、実行されることはありません。関連コマンド: set_file_enable。
- [-h、--help]: ヘルプ情報を表示します。

例

add_file abc.v

add_file -type vhdl 1.vhd 2.vhdl 3.vhd

add_file D:/gowin_project/top.v

add_file D:¥¥gowin_project¥¥top.v

8.3.2 create_ipc

デフォルトの構成で ipc ファイルを生成します。

構文

create_ipc -name <ipName> -module_name <moduleName> [language <arg>] [-file_name <fileName>] [-dir <path>] [-force]

形式

名称	説明
-name	IP name
-module_name	作成されるIPのモジュール名
[-language]	IPファイル、テンプレートファイル、シミュレーシ
	ョンファイルの言語
[-file_name]	IPファイルの名前
[-dir]	IP生成パス
[-force]	既存のファイルを上書きします

分類

IPFlow

説明

このコマンドは、IP Core Generator 内の IP コアの IPC ファイルを作 成します。

パラメータ

- -name <ipName> : IP の名前を指定します。この名前は、IP Core Generator から取得できます。
- -module_name <moduleName>:作成される IP のモジュール名を指 定します。
- [-language <arg>]: 生成される IP ファイル、テンプレートファイル、 およびシミュレーションファイルの言語 (Verilog/VHDL)を指定しま す。指定しない場合は、デフォルトで Verilog が使用されます。
- [-file_name <fileName>]: 生成される IP ファイルの名前を指定しま す。指定しない場合は、module_name で指定された名前と同じにな ります。
- [-dir] <path> : IP 生成パスを指定します。指定しない場合は、現在の プロジェクトの src フォルダーに生成されます。
- [-force]: 既存のファイルを上書きします。

例

次の例では、現在のプロジェクトの src フォルダーに-name で指定された IP コアが作成され、モジュール名、言語、ファイル名が指定されます。

create_ip -name fifo -module_name FIFO_Top -language Verilog - file_name fifo

関連項目

generate target

8.3.3 create_project

プロジェクトを新規作成します。

構文

create_project [-name <prjName>] [-dir <path>] [-pn <pnName>] [device_version <arg>] [-force] [-h/--help]

形式

1
なされるプロジェクトの名前
女 すされるプロジェクトのパス
なされるプロジェクトの部品番号
なされるプロジェクトのデバイスバージョン
Fのファイルを上書きします
~プ情報を表示します

分類

Project

説明

プロジェクトを新規作成します。ファイルパスの形式については、 <u>8.3.1 add file</u>を参照してください

パラメータ

- [-name <prjName>]:作成されるプロジェクトの名前を指定します。
- [-dir <path>]:作成されるプロジェクトのパスを指定します。指定したパスが存在しない場合は、新しいパスが作成されます。このオプションが指定されていない場合は、現在のプロジェクトのパスまたはtclスクリプトが配置されているパスが使用されます。
- [-pn <PnName>]:作成されるプロジェクトの Part Number(部品番号) を指定します。
- [-device_version < arg>]: Part Number の device version を指定します。初期バージョンのみを持つデバイスの場合、device version の値は NA です。
- [-force]: 既存のプロジェクトを上書きします。
- [-h、--help]: ヘルプ情報を表示します。

例

create_project -name prj0 -dir D:/tclprj -pn GW1N-UV4LQ144C6/15 - device_version B
create_project -name prjlest -pn GW1N-UV4LQ144C6/15 device version B -force

8.3.4 generate_target

指定されたオブジェクトのターゲット・ファイルを生成します。

構文

generate_target <objects> [-force]

形式

名称	説明
<objects></objects>	ターゲット・ファイルが生成されるオブジェクトを 指定します。
[-force]	既存のファイルを上書きします

分類

<u>IPFlow</u>

説明

このコマンドは、指定された IP オブジェクト(get_ips)のターゲット・ファイルを生成し、IP コアの設計ファイルを現在のプロジェクトに追加します。

パラメータ

- <objects>: 設計ファイルが生成される1つまたは複数のIP オブジェ クトを指定します。1つのオブジェクトは[get_ips module_name]で指 定されます。複数のオブジェクトは、[get_ips module_name0 module_name1 …] で指定されます。
- [-force]: 既存のファイルを上書きします。

例

次の例では、指定された IP の設計ファイルとテンプレートファイル が生成され、現在のプロジェクトに追加されます。

generate_target [get_ips FIFO_Top]

関連項目

- generate_target
- <u>create_ipc</u>
- read_ipc

8.3.5 get_ips

IP オブジェクトを指定します。

構文

get_ips <module_name>

形式

名称	説明
<module_name></module_name>	IPの module_name を指定します

分類

IPFlow

説明

現在のプロジェクトの IP オブジェクトを指定します。

パラメータ

<module_name> : IP オブジェクトの module_name(1 つまたは複数) を指定します。

例

次の例では、現在のプロジェクトに1つの IP オブジェクトが指定されます。

get_ips FIFO_Top

次の例では、現在のプロジェクトに複数の IP オブジェクトが指定されます。

get_ips FIFO_Top FIFO_Top_1

関連項目

- generate target
- list property
- report_property
- <u>set property</u>

8.3.6 import_files

ファイルまたはディレクトリを現在のプロジェクトにコピーします。

構文

import_files [-file <file>] [-dir <path>] [-fileList <fileList>] [-force] [-h/-help]

名称	説明
[-file]	コピーされるファイルを指定します
[-dir]	コピーされるディレクトリを指定します
[-fileList]	ファイルリストを指定します
[-force]	同じ名前の既存のファイルを上書きします
[-h/help]	ヘルプ情報を表示します

Project

説明

ファイルまたはディレクトリを現在のプロジェクトのパス/src にコピーします。-file、-dir、および-fileList は、相対パスと絶対パスをサポートします。相対パスは、Gowin ソフトウェア GUI では現在のプロジェクトのパスを基準にしており、コマンドラインモードでは tcl スクリプトのパスを基準にしています。import_files の後にオプションがない場合は、add_file コマンドで指定されたすべてのファイルがプロジェクトのパス/src にコピーされます。

パラメータ

- [-file <file>]: 1 つ以上のファイルをプロジェクトのパス/src に追加し ます。
- [-dir <path>]: パスの下にあるすべてのファイルとサブフォルダをプ ロジェクトのパス/src に追加します。
- [-fileList <fileList>]: リストファイルを指定します。ファイル内の各行は追加されるプロジェクトファイルです。その内容の例は次のとおりです:
 - D:/test1.v
 - D:/test2.v
 - このオプションにより、ファイル内の各行で指定されたファイル をプロジェクトのパス/src に追加できます。
- [-force]: プロジェクトのパス/src にある同名のファイルを上書きしま す。
- [-h/--help]: ヘルプ情報を表示します。

例

import_files -file D/test1 .v -force import_files -file D:/test1 .v D:/test2.v -force import_files -dir D:/sourceFile import_files -fileList log。log ファイルの内容は次のとおりです: D:/Test1.v D:/Test2.v

8.3.7 list_property

オブジェクトの属性をリストします。

構文

list_property <object>

形式

名称	説明
<object></object>	属性がリストされるオブジェクト

分類

IPFlow

説明

指定された IP オブジェクトのすべてのオプションのリストを取得し ます。

パラメータ

<object>: IP オブジェクト。[get_ips module_name]で指定されます。

例

次の例では、指定された IP オブジェクトのすべての属性がリストされます。

list_property [get_ips FIFO_Top]

関連項目

- report_property
- <u>set property</u>

8.3.8 open_project

プロジェクトを開きます。

構文

open_project <file>] [-pn] [-device_version] [-h/--help]

形式

名称	説明
<file></file>	プロジェクトファイルを指定します
[-pn]	部品番号を指定します
[-device_version]	プロジェクトのデバイスバージョンを指定します
[-h/help]	ヘルプ情報を表示します

分類

<u>Project</u>

説明

プロジェクトを開きます。開くプロジェクトのために新しい部品番号 を指定することができます。ファイルパスの形式については、<u>8.3.1</u> add file を参照してください。 パラメータ

- <file>: 開くプロジェクトファイルの名前を指定します。
- [-pn]: プロジェクトの部品番号を指定します。
- [-device_version] : デバイスのバージョンを指定します。
- [-h/--help]: ヘルプ情報を表示します。

例

open_project D:¥test.gprj

8.3.9 read_ipc

ipc ファイルを読み出します。

構文

read_ipc <file>

形式

名称	説明
<file></file>	IPCファイル

分類

<u>IPFlow</u>

説明

指定された IPC ファイルを読み出します。ファイルパスの形式については、<u>8.3.1 add_file</u>を参照してください。

パラメータ

<file>:指定される IPC ファイルを指定します。

例

次の例では、指定された IPC ファイルが読み出されいます。

read_ipc D:/gowin_project/src/fifo/fifio.ipc

関連項目

generate_target

8.3.10 report_property

オブジェクトの属性を報告します。

構文

report_property <object>

形式

名称	説明
<object></object>	属性がリストされるオブジェクト

分類

IPFlow

説明

指定された IP オブジェクトのオプション名、オプションタイプ、お よびオプション値を取得します。

パラメータ

<object>: IP オブジェクト。[get_ips module_name]で指定されます。

例

次の例では、指定された IP オブジェクトのすべての属性がリストされます。

report_property [get_ips FIFO_Top]

関連項目

- set_property
- <u>list_property</u>

8.3.11 rm_file

設計ファイルを削除します。

構文

rm_file [-h/--help] <files>

形式

名称	説明
<-files>	削除されるファイル
[-h/help]	ヘルプ情報を表示します

分類

Project

説明

設計ファイルを削除します。ファイルパスの形式については、<u>8.3.1</u> add file を参照してください。

パラメータ

● <-files>:削除される設計ファイルを指定します。複数指定できます (スペースで区切ります)。 ● [-h/--help]: ヘルプ情報を表示します。

例

rm_file a.v
rm_file a.v b.v c.v
rm_file D:/gowin_project/top.v
rm_file D:¥¥gowin_project¥¥top.v

8.3.12 run

プロセスを実行します。

構文

run [-h/--help] <syn/pnr/all>

形式

名称	説明
<syn all="" pnr=""></syn>	実行されるプロセスを指定します
[-h/help]	ヘルプ情報を表示します

分類

Project

説明

プロセスを実行します。

パラメータ

- <syn/pnr/all>:実行するプロセスの名前を指定します。実行可能なプロセスの名前は、synおよびpnrであり、それぞれ合成および配置配線を表します。allを指定して、すべてのプロセスを実行することもできます。
- [-h/--help]: ヘルプ情報を表示します。

例

run pnr run all

8.3.13 run close

プロジェクトを閉じます。

構文

run close

分類

Project

説明

現在のプロジェクトを閉じます。

例

run close

8.3.14 saveto

現在のプロジェクトのデータを Tcl スクリプトに保存します。

構文

saveto [-all_options] [-h/--help] <file>

形式

名称	説明
[-all_options]	すべてのオプション情報を保存します
[-h/help]	ヘルプ情報を表示します
<file></file>	ファイルの名前

分類

Project

説明

現在のプロジェクトの設計データを Tcl スクリプトに保存します。フ ァイルパスの形式については、<u>8.3.1 add file</u>を参照してください。

パラメータ

- [-all_options]: saveto コマンドは、デフォルトでは変更されたオプション情報、つまりデフォルト値とは異なるオプションのみを保存します。-all_optionsを使用して、すべてのオプション情報を保存することができます。
- [-h、--help]: ヘルプ情報を表示します。
- <file>: ファイルの名前。

例

- saveto project.tcl
- saveto -all_options project.tcl
- saveto -all_options D:/gowin_project/project.tcl
- saveto -all_options D:¥¥gowin_project¥¥project.tcl

8.3.15 set_device

デバイスの型番を設定します。

構文

set_device [-device_version <value>] [-h/--help] <part number>

形式

名称	説明
[-device_version <value>]</value>	設定されるデバイスバージョン
[-h/help]	ヘルプ情報を表示します
<part number=""></part>	設定される部品番号

分類

Project

説明

デバイスの型番を設定します。

パラメータ

- <part number>:ターゲットデバイスの部品番号(例えば、GW1N-UV4LQ144C6/I5)を指定します。
- [-device_version<value>]:デバイスのバージョンを指定します。サポ ートされるバージョンには、NA|B|C|D があります。
- [-h/--help]: ヘルプ情報を表示します。

例

set_device GW1N-LV1CS30C6/I5

set_device - device_version C GW1N-UV4LQ144C6/I5

8.3.16 set_file_enable

ファイルのイネーブル属性を設定します。

構文

set_file_enable <file> <true|false> [-h/--help]

形式

名称	説明
<file></file>	設定される設計ファイルを指定します。
<true false></true false>	ファイルを使用できるかを設定します
[-h/help]	ヘルプ情報を表示します

分類

Project

説明

ファイルを使用できるかを設定します。ファイルパスの形式については、<u>8.3.1 add file</u>を参照してください。

パラメータ

● <file>: 設定されるファイルを指定します。

- <true | false> : true はファイルを使用できることを意味し、false は 使用できないことを意味します。
- [-h/--help]: ヘルプ情報を表示します。

例

set_file_enable top.v false

set_file_enable D:/gowin_project/top.v

set_file_enable D:¥¥gowin_project¥¥top.v

8.3.17 set_file_prop

ファイルの属性を設定します。

構文

set_file_prop <file> [-lib <name>] [-h/--help]

形式

名称	説明
<file></file>	設定される設計ファイルを指定します。
[-lib <name>]</name>	ファイルのlibrary nameを設定します。
[-h/help]	ヘルプ情報を表示します

分類

Project

説明

ファイルの属性を設定します。ファイルパスの形式については、<u>8.3.1</u> add_file_を参照してください。

パラメータ

- <file>:設定されるファイルを指定します。複数指定できます(スペー スで区切ります)。
- [-lib <name>]: ファイルの library name を設定します。このオプションは、VHDL ファイルにのみ有効です。
- [-h/--help]: ヘルプ情報を表示します。

例

set_file_prop -lib work top .vhd

set_file_prop -lib work D:/gowin_project/top.vhd

set_file_prop -lib work D:¥¥gowin_project¥¥top.vhd

8.3.18 set_csr

csr ファイルを指定します。

構文

set_csr [-h/--help] <file>

形式

名称	説明
<file></file>	指定される csr ファイル
[-h/help]	ヘルプ情報を表示します

分類

Project

説明

csr ファイルを指定します。ファイルパスの形式については、<u>8.3.1</u> <u>add_file</u>を参照してください。。

パラメータ

- <files>: csr ファイルを指定します。
- [-h/--help]: ヘルプ情報を表示します。。

例

set_csr a.csr
set_csr D:/gowin_project/a.csr
set_csr D:¥¥gowin_project¥¥a.csr

8.3.19 set_option

プロジェクトに関連する属性とプロセスのオプションを設定します。

構文

set_option [options] [-h/--help]

形式

名称	説明
[options]	属性とプロセスのオプションを設定します。
[-h/help]	ヘルプ情報を表示します

分類

Project

説明

プロジェクトに関連する属性とプロセスのオプションを設定します。 パラメータ

● [options]:属性とプロセスのオプションを設定します。

● [-h/--help]: ヘルプ情報を表示します。

Global 属性の構成

-output_base_name

出力されるファイルの名前を指定します。

構文

-output_base_name <name>

形式

名称	説明
<name></name>	出力されるファイルの名前を指定します。

分類

Project

説明

出力されるファイルの名前を指定します。このオプションはファイル の base name のみを指定します。出力ファイルのタイプに応じて適切な 拡張子が使用されます。例えば、-output_base_name abc の場合、 gowinsynthesis によって生成されるネットリスト・ファイルの名前は abc.vg になります。

パラメータ

<name>:出力されるファイルの名前を指定します。

例

set_option -output_base_name abc

-global_freq

frequency の値を指定します。

構文

-global_freq <default|value>

形式

名称	説明
<default value></default value>	frequencyの値を指定します

分類

Project

説明

frequency の値を指定します。デフォルトでは、50MHz(LittleBee ファ ミリー)または 100MHz(Arora ファミリー)です。

パラメータ

<default|value>: frequency の値。

例

set_option -global_freq 80

合成属性の構成

-synthesis_tool

合成ツールを指定します。

構文

-synthesis_tool <tool>

形式

名称	説明
<tool></tool>	合成ツールを指定します

分類

Project

説明

合成ツール(GowinSynthesis)を指定します。

パラメータ

<tool>: 合成ツール(GowinSynthesis)を指定します。

例

set_option -synthesis_tool GowinSynthesis

-top_module

Top Module/Entity を指定します。

構文

-top_module <name>

形式

名称	説明
<name></name>	top moduleを指定します

分類

Project

説明

top module を指定します。

パラメータ

<name>: top module を指定します。

例

set_option -top_module test

-include_path

インクルードパスを指定します。

構文

-include_path <path or path list>

形式

名称	説明
<path list="" or="" path=""></path>	インクルードパスを指定します

分類

Project

説明

インクルードパスを指定します。複数のインクルードパスを指定する 場合は、セミコロンを使用してパスを区切り、中かっこ{}ですべてのパス 情報を含めます(例えば:-include_path {/path1;/path2;/path3})。相対パス と絶対パスをサポートします。

パラメータ

<path or path list>: インクルードパスを指定します。

例

set_option -include_path D:/project

-verilog_std

Verilog 言語のバージョンを指定します。

構文

-verilog_std<v1995|v2001|sysv2017>

形式

名称	説明
<v1995 v2001 sysv2017></v1995 v2001 sysv2017>	Verilog言語のバージョンを指定します

分類

Project

説明

Verilog 言語: Verilog 95/Verilog 2001/System Verilog 2017。デフォル トは Verilog 2001 です。

パラメータ

<v1995|v2001|sysv2017>: Verilog 言語のバージョンを指定します。

例

set_option -verilog_std v1995

-vhdl_std

VHDL 言語のバージョンを指定します。

構文

-vhdl_std <vhd1993|vhd2008|vhd2019>

形式

名称	説明
< vhd1993 vhd2008 vhd2019>	VHDL言語のバージョンを指定します

分類

Project

説明

VHDL 言語のバージョンを指定します: VHDL 1993/VHDL 2008/VHDL 2019。デフォルトは VHDL1993 です。

パラメータ

<vhd1993|vhd2008|vhd2019>:VHDL 言語のバージョンを指定します。

例

set option -vhdl std vhd2008

-print_all_synthesis_warning <0|1>

すべての合成警告情報を出力するかどうかを指定します。デフォルトは0です。

構文

-print_all_synthesis_warning <0|1>

形式

名称	説明
<0 1>	0: すべての警告情報を出力しません。
	1: すべての警告情報を出力します。

分類

Project

説明

すべての合成警告情報を出力するかどうかを指定します。デフォルトは0です。

パラメータ

<0|1>: すべての合成警告情報を出力するかどうかを指定します。

例

set_option -print_all_synthesis_warning 1

-disable_io_insertion

I/O 挿入を有効または無効にします。

構文

-disable_io_insertion <0|1>

形式

名称	説明
<0 1>	0: I/O挿入を有効にします。
	1:I/O挿入を無効にします。

分類

Project

説明

I/O 挿入を有効または無効にします。デフォルトはOです。

パラメータ

<0|1>: I/O 挿入を有効または無効にします。

例

set_option -disable_io_insertion 1

-looplimit <value>

RTL 内のデフォルトのコンパイラのループ制限値。

構文

-looplimit <value>

形式

名称	説明
<value></value>	looplimitの値

分類

Project

説明

RTL のデフォルトのコンパイラのループ制限値で、デフォルト値は 2000 です。

パラメータ

<value>: RTL 内のデフォルトのコンパイラのループ制限値。

例

set_option -looplimit 1000

-maxfan <value>

ファンアウト値を設定します。

構文

-maxfan <value>

形式

名称	説明
<value></value>	maxfanの値

分類

Project

説明

入力ポート、net またはレジスタ出力ポートのファンアウト値を設定 します。デフォルトは 10000 です。

パラメータ

value>:入力ポート、net、またはレジスタの出力ポートのファンアウト値。

例

set option -maxfan 5000

-rw_check_on_ram

RAM の周囲にバイパスロジックを挿入します。

構文

-rw_check_on_ram <0|1>

形式

名称	説明
<0 1>	0 :有効にしません。
	1:有効にします。

分類

Project

説明

RAM に読み出しまたは書き込みの競合がある場合、このオプション を有効にすると、RAM の周りに、シミュレーションの不一致を防ぐため のバイパスロジックが挿入されます。デフォルトでは0です。

パラメータ

<0|1>: RAM の周囲にバイパスロジックを挿入することを有効または 無効にします。

例

set_option -rw_check_on_ram 1

Place & Route 属性の構成

-vccx

VCCX の値を指定します。

構文

-vccx <value>

形式

名称	説明
<value></value>	VCCXの値を指定します。

分類

Project

説明

VCCX の値を指定します。

```
パラメータ
```

<value>: VCCX の値を指定します。

例

set_option -vccx 3.3

-VCC

構文

-vcc <value>

形式

名称	説明
<value></value>	VCCの値を指定します。

分類

Project

説明

VCC の値を指定します。

パラメータ

<value> : VCC の値を指定します。

例

set_option -vcc 3.3

-gen_sdf

SDF ファイルを生成するかを指定します。

構文

-gen_sdf <0|1>

形式

名称	説明
<0 1>	0:SDFファイルを生成しません。
	1:SDFファイルを生成します。

分類

Project

説明

Place&Route が SDF ファイルを生成するかどうかを指定します。デフォルトは0です。

パラメータ

<0|1>: SDF ファイルを生成するかを指定します。

例

set_option -gen_sdf 1

-gen_io_cst

*.io.cst という名前のポートの物理制約ファイルを生成するかどうかを 指定します。

構文

-gen_io_cst <0|1>

形式

名称	説明
<0 1>	0:*.io.cstファイルを生成しません。
	1:*.io.cstファイルを生成します。

分類

Project

説明

Place & Route が*.io.cst という名前のポートの物理制約ファイルを生成するかどうかを指定します。デフォルトは0です。

パラメータ

<0|1>:ポートの物理制約ファイルを生成するかどうかを指定します。

例

set_option -gen_io_cst 1

-gen_ibis

*.ibs という名前の入出力バッファ情報指定ファイルを生成するかどう かを指定します。

構文

-gen ibis <0|1>

形式

名称	説明
<0 1>	0:*.ibsファイルを生成しません。
	1:*.ibsファイルを生成します。

分類

Project

説明

Place&Route が*.ibs という名前の入出力バッファ情報指定ファイル を生成するかどうかを指定します。デフォルトは0です。

パラメータ

<0|1>:入出力バッファ情報指定ファイルを生成するかどうかを指定します。

例

set_option -gen_ibis 1

-gen_posp

配置ファイルを生成するかどうかを指定します。

構文

-gen_posp <0|1>

形式

名称	説明
<0 1>	0:*.pospファイルを生成しません。
	1:*.pospファイルを生成します。

分類

Project

説明

Place&Route が*.posp という名前の配置ファイルを生成するかどう かを指定します。このファイルには、BSRAM の配置情報のみが含まれま す。デフォルトは0です。

パラメータ

<0|1>:配置ファイルを生成するかどうかを指定します。

例

set_option -gen_posp 1

-gen_text_timing_rpt

テキスト形式のタイミングレポートを生成します。

構文

-gen_text_timing_rpt <0|1>

形式

名称	説明
<0 1>	0:*.trファイルを生成しません。
	1:*.trファイルを生成します。

分類

Project

説明

Place & Route が*.tr という名前のテキスト形式のタイミングレポート を生成するかどうかを指定します。デフォルトは0です。

パラメータ

<0|1>: テキスト形式のタイミングレポートを生成するかどうかを指定します。

例

set_option -gen_text_timing_rpt 1

-gen_verilog_sim_netlist

Verilog タイミングシミュレーション・モデル・ファイルを生成する かどうかを指定します。

構文

-gen_verilog_sim_netlist <0|1>

形式

名称	説明
<0 1>	0:*.voファイルを生成しません。
	1:*.voファイルを生成します。

分類

Project

説明

Place&Route が*.vo という名前の Verilog タイミングシミュレーショ

ン・モデル・ファイルを生成するかどうかを指定します。デフォルトは**0** です。

パラメータ

<0|1>: Verilog タイミングシミュレーション・モデル・ファイルを生成するかどうかを指定します。

例

set_option -gen_verilog_sim_netlist 1

-gen_vhdl_sim_netlist

VHDL タイミングシミュレーション・モデル・ファイルを生成するか どうかを指定します。

構文

-gen_vhdl_sim_netlist <0|1>

形式

名称	説明
<0 1>	0:*.vhoファイルを生成しません。
	1:*.vhoファイルを生成します。

分類

Project

説明

Place&Route が*.vho という名前の VHDL タイミングシミュレーション・モデル・ファイルを生成するかどうかを指定します。デフォルトは 0 です。

パラメータ

<0|1>: VHDL タイミングシミュレーション・モデル・ファイルを生成するかどうかを指定します。

例

set_option -gen_vhdl_sim_netlist 1

-show_init_in_vo

タイミングシシミュレーション・モデル・ファイルのインスタンスに デフォルトの初期値を追加します。

構文

-show_init_in_vo <0|1>

名称	説明
<0 1>	0 :タイミングシミュレーション・モデル・ファ

イルのインスタンスにデフォルトの初期値を追加
しません。
1:タイミングシシミュレーション・モデル・フ
ァイルのインスタンスにデフォルトの初期値を追
加します。

Project

説明

配置配線後のタイミングシミュレーション・モデル・ファイルのイン スタンスにデフォルトの初期値を追加するかどうかを指定します。デフォ ルトは0です。

パラメータ

<0|1>:配置配線後のタイミングシミュレーション・モデル・ファイルのインスタンスにデフォルトの初期値を追加するかどうかを指定します。

例

set_option -show_init_in_vo 1

-show_all_warn

すべての警告情報を出力するかどうかを指定します。

構文

-show_all_warn<0|1>

形式

名称	説明
<0 1>	0:配置配線中のすべての警告情報を出力しません。
	1:配置配線中のすべての警告情報を出力します。

分類

Project

説明

配置配線中にすべての警告情報を出力するかどうかを指定します。デフォルトは0です。

パラメータ

<0|1>:配置配線中にすべての警告情報を出力するかどうかを指定します。

例

set_option -show_all_warn 1

-timing_driven

タイミングドリブン配置配線を実行するかどうかを指定します。

構文

-timing_driven <0|1>

形式

名称	説明
<0 1>	0:タイミングドリブン配置配線を実行しません。
	1:タイミングドリブン配置配線を実行します。

分類

Project

説明

タイミングドリブン配置配線を実行するかどうかを指定します。デフ オルトは1です。

パラメータ

<0|1>:タイミングドリブン配置配線を実行するかどうかを指定します。

例

set_option -timing_driven 1

-cst_warn_to_error

物理制約の警告をエラーに昇格させます。

構文

-cst_warn_to_error <0|1>

形式

名称	説明
<0 1>	0:物理制約の警告をエラーに昇格させます。
	1:物理制約の警告をエラーに昇格させません。

分類

Project

説明

配置配線中の物理制約の警告をエラーに昇格させるかどうかを指定します。デフォルトは**1**です。

パラメータ

<0|1>:配置配線中の物理制約の警告をエラーに昇格させるかどうかを指定します。

例

set_option -cst_warn_to_error 1

-rpt_auto_place_io_info

1:自動配置の IO 位置情報を報告します。

構文

-rpt_auto_place_io_info <0|1>

形式

名称	説明
<0 1>	0:自動配置のIO位置情報を報告しません。
	1:自動配置のIO位置情報を報告します。

分類

Project

説明

配置配線の実行中に自動配置の IO 位置情報を報告するかどうかを指定します。デフォルトは0です。

パラメータ

<0|1>:自動配置の IO 位置情報を報告するかどうかを指定します。

例

set_option -cst_warn_to_error 1

-place_option

配置アルゴリズムオプション。

構文

-place_option <0|1|2|3|4>

形式

名称	説明
<0 1 2 3 4>	0:デフォルトの配置アルゴリズムを使用しま
	す。
	1:配置アルゴリズム1を使用します。
	2:配置アルゴリズム2を使用します。
	3:配置アルゴリズム3を使用します。
	4:配置アルゴリズム4を使用します。

分類

Project

説明

配置アルゴリズムオプション。デフォルトは0です。

パラメータ

```
<0|1|2|3|4>:配置アルゴリズムオプション。
```

例

set_option -place_option 1

-route_option

配線アルゴリズムオプション。

構文

-route_option <0|1|2>

形式

名称	説明
<0 1 2>	0:デフォルトの配線アルゴリズムを使用しま
	す。
	1: 配線アルゴリズム1を使用します。
	2: 配線アルゴリズム2を使用します。

分類

Project

説明

配線アルゴリズムオプション。デフォルトは0です。

パラメータ

<0|1|2>: 配線アルゴリズムオプション。

例

set_option -route_option 1

-ireg_in_iob

入力バッファに接続されるレジスタを IOB に配置します。

構文

-ireg_in_iob <0|1>

形式

名称	説明
<0 1>	0 :入力バッファに接続されるレジスタをIOBに配置しません。
	1:入力バッファに接続されるレジスタをIOBに配置します。

分類

Project

説明

このオプションを有効にすると、入力バッファに接続されるレジスタ

は IOB に配置されます。デフォルトは1です。

パラメータ

<0|1>:入力バッファに接続されるレジスタを IOB に配置するかどう かを指定します。

例

set_option -ireg_in_iob 1

-oreg_in_iob

出力/トライステートバッファに接続されるレジスタを IOB に配置します。

構文

-oreg_in_iob <0|1>

形式

名称	説明
<0 1>	 0:出力/トライステートバッファに接続されるレジスタをIOBに配置しません。 1:出力/トライステートバッファに接続されるレジスタをIOBに配置します。

分類

Project

説明

このオプションを有効にすると、出力/トライステートバッファに接続 されるレジスタは IOB に配置されます。デフォルトは1です。

パラメータ

<0|1>:出力/トライステートバッファに接続されるレジスタを IOB に 配置するかどうかを指定します。

例

set_option -oreg_in_iob 1

-ioreg_in_iob

双方向バッファに接続されるレジスタを IOB に配置します。

構文

-ioreg_in_iob <0|1>

名称	説明
<0 1>	0 :双方向バッファに接続されるレジスタをIOBに配置 しません。
	1:双方向バッファに接続されるレジスタをIOBに配置

します。

分類

Project

説明

このオプションを有効にすると、双方向バッファに接続されるレジス タは IOB に配置されます。デフォルトは1です。

パラメータ

<0|1>:双方向バッファに接続されるレジスタを IOB に配置するかどうかを指定します。

例

set_option -ioreg_in_iob 1

-replicate_resources

高ファンアウトのリソースを複製してファンアウトを低減し、タイミングの結果を改善します。

構文

-replicate_resources <0|1>

形式

名称	説明
<0 1>	0:高ファンアウトのリソースを複製しません。
	1:高ファンアウトのリソースを複製してファンアウト を低減します。

分類

Project

説明

このオプションを有効にすると、高ファンアウトのリソースが複製さ れてファンアウトが低減され、タイミングの結果が改善されます。デフォ ルトは0です。

パラメータ

<0|1>:高ファンアウトのリソースを複製してファンアウトを低減す るかどうかを指定します。

例

set_option -replicate_resources 1

-clock_route_order

クロックプリミティブにより生成されたクロックライン以外のクロッ クラインの配線割り当て順を指定します。

構文

-clock_route_order <0|1>

形式

名称	説明
<0 1>	0:netのファンアウト数の多い順で割り当てま
	す。
	1:周波数の高い順で割り当てます。

分類

Project

説明

クロックプリミティブにより生成されたクロックライン以外のクロッ クラインの配線割り当て順を指定します。0と1の2つのオプションがあ り、デフォルトは0です。

パラメータ

<0|1>: クロックプリミティブにより生成されたクロックライン以外のクロックラインの配線割り当て順を指定します。

例

set_option -clock_route_order 1

-route_maxfan

配線のファンアウトの最大数を設定します。

構文

-route_maxfan <value>

形式

名称	説明
< value>	配線のファンアウトの最大数を設定します。

分類

Project

説明

配線のファンアウトの最大数を設定します。値は0より大きく100以下の整数である必要があります。デバイスがGW1NZ-1/GW1N-2/GW1NR-2/GW1N-1P5の場合、このオプションのデフォルト値は10 で、他のデバイスの場合、デフォルト値は23です。

パラメータ

<value>: 配線のファンアウトの最大数を設定します。

例

set_option -route_maxfan 60

-correct_hold_violation

配線によりタイミングの Hold 違反を自動修正します。

構文

-correct_hold_violation <0|1>

形式

名称	説明
<0 1>	0: 配線によりタイミングのHold違反を自動修正しま
	せん。
	1: 配線によりタイミングのHold違反を自動修正しま
	す。

分類

Project

説明

このオプションを有効にすると、配線によりタイミングの Hold 違反 が自動修正されます。デフォルト値は1です。

パラメータ

<0|1>: 配線によりタイミングの Hold 違反を自動修正するかどうかを 指定します。

例

set_option -correct_hold_violation 1

-inc_place <0|auto|file>

インクリメンタル配置。

構文

-inc_place <0|auto|file>

形式

名称	説明
<0 auto file >	0:インクリメンタル配置をオフにします。
	auto:自動的にインクリメンタル配置を実行します。
	file:*.pファイルを指定してインクリメンタル配置を
	実行します。

分類

Project

説明

このオプションを有効にすると、インクリメンタル配置が使用されます。デフォルト値は0です。

パラメータ

<0|auto|file >: インクリメンタル配置を制御します。

例

set_option -inc_place auto

-inc_pnr <0|auto|file>

インクリメンタル配置配線。

構文

-inc_pnr <0|auto|file>

形式

名称	説明
<0 auto file >	0:インクリメンタル配置配線をオフにします。
	auto:自動的にインクリメンタル配置配線を実行します。
	file:*.pファイルを指定してインクリメンタル配置配 線を実行します。

分類

Project

説明

このオプションを有効にすると、インクリメンタル配置配線が使用されます。デフォルト値は0です。

パラメータ

<0|auto|file>:インクリメンタル配置配線を制御します。

例

set_option -inc_pnr auto

注記:

Place&Routeのオプションの詳細については、このドキュメントのセクション 4.3.3の Place & Route を参照してください。

多重化ピンの属性の構成

-use_jtag_as_gpio

JTAG ピンを GPIO として多重化します。

構文

-use_jtag_as_gpio <0|1>

名称	説明
<0 1>	0: JTAG 専用ピンとして使用します。
	1: GPIO として多重化します

Project

説明

JTAG ピンを GPIO として多重化します。デフォルトは0です。

パラメータ

<0|1>: JTAG ピンを GPIO として多重化するかどうかを指定します。 例

set_option -use_jtag_as_gpio 1

-use_sspi_as_gpio

SSPI ピンを GPIO として多重化します。

構文

-use_sspi_as_gpio <0|1>

形式

名称	説明
<0 1>	0:SSPI専用ピンとして使用します。
	1:GPIO として多重化します

分類

Project

説明

SSPI ピンを GPIO として多重化します。デフォルトは 0 です。

パラメータ

<0|1>: SSPI ピンを GPIO として多重化するかどうかを指定します。 例

set option -use sspi as gpio 1

-use_mspi_as_gpio

MSPI ピンを GPIO として多重化します。

構文

-use_mspi_as_gpio <0|1>

名称	説明
<0 1>	0:MSPI専用ピンとして使用します。
	1:GPIO として多重化します

Project

説明

MSPI ピンを GPIO として多重化します。デフォルトは0です。

パラメータ

<0|1>: MSPI ピンを GPIO として多重化するかどうかを指定します。 例

set_option -use_mspi _as_gpio 1

-use_ready_as_gpio

READY ピンを GPIO として多重化します。

構文

-use_ready_as_gpio <0|1>

形式

名称	説明
<0 1>	0:READY専用ピンとして使用します。
	1:GPIOとして多重化します

分類

Project

説明

READY ピンを GPIO として多重化します。デフォルトは 0 です。 パラメータ

<0|1>: READY ピンを GPIO として多重化するかどうかを指定します。

例

set_option -use_ready_as_gpio 1

-use_done_as_gpio

DONE ピンを GPIO として多重化します。

構文

```
-use_done_as_gpio <0|1>
```

名称	説明
<0 1>	0:DONE 専用ピンとして使用します。
	1: GPIO として多重化します

Project

説明

DONE ピンを GPIO として多重化します。デフォルトは0です。

パラメータ

<0|1>: DONE ピンを GPIO として多重化するかどうかを指定します。

例

set_option -use_ done_as_gpio 1

-use_reconfign_as_gpio

RECONFIG_N ピンを GPIO として多重化します。

構文

-use_ reconfign_as_gpio <0|1>

形式

名称	説明
<0 1>	0:RECONFIG_N専用ピンとして使用します。
	1:GPIOとして多重化します

分類

Project

説明

RECONFIG_N ピンを GPIO として多重化します。デフォルトは 0 で す。

パラメータ

<0|1>: RECONFIG_N ピンを GPIO として多重化するかどうかを指 定します。

例

set_option -use_reconfign_as_gpio 1

-use_i2c_as_gpio

I2C ピンを GPIO として多重化します。

構文

-use_i2c_as_gpio <0|1>

SUG100-4.4.2J

形式

名称	説明
<0 1>	0: I2C 専用ピンとして使用します。
	1: GPIO として多重化します

分類

Project

説明

I2C ピンを GPIO として多重化します。デフォルトは 0 です。

パラメータ

<0|1>: I2C ピンを GPIO として多重化するかどうかを指定します。

例

set_option -use_i2c_as_gpio 1

BitStream の属性の構成

-bit_format

生成されるビットストリームファイルのコンテンツの形式を指定します。

構文

-bit_format <txt|bin>

形式

名称	説明
<txt bin></txt bin>	ビットストリームファイルのコンテンツの形式。

分類

Project

説明

生成されるビットストリームファイルのコンテンツの形式を指定しま す。デフォルトは bin です。

パラメータ

<txt|bin>:生成されるビットストリームファイルのコンテンツの形式 を指定します。

例

set_option -bit_format txt

-bit_crc_check

巡回冗長検査。

構文

SUG100-4.4.2J

-bit_crc_check <0|1>

形式

名称	説明
<0 1>	0:巡回冗長検査を有効にしません。
	1:巡回冗長検査を有効にします。

分類

Project

説明

ビットストリームファイルの巡回冗長検査を有効にするかどうかを指 定します。デフォルトは**1**です。

パラメータ

<0|1>:ビットストリームファイルの巡回冗長検査を有効にするかどうかを指定します。

例

set_option -bit_crc_check 1

-bit_compress

ビットストリームファイルを圧縮します。

構文

-bit compress <0|1>

形式

名称	説明
<0 1>	0:ビットストリームファイルを圧縮しません。
	1:ビットストリームファイルを圧縮します。

分類

Project

説明

生成されるビットストリームファイルを圧縮します。デフォルトは**1** です。

パラメータ

<0|1>:ビットストリームファイルを圧縮するかどうかを指定します。

例

set_option -bit_compress 1

-bit_encrypt
ビットストリームファイルを暗号化します。

構文

-bit_encrypt <0|1>

形式

名称	説明
<0 1>	0:暗号化しません。
	1:暗号化します。

分類

Project

説明

ビットストリームファイルを暗号化します(Arora ファミリーのみをサ ポート)。デフォルトは0です。

パラメータ

<0|1>:ビットストリームファイルを暗号化するかどうかを指定します。

例

set_option -bit_encrypt 1

-bit_encrypt_key

暗号化キーをカスタマイズします。

構文

-bit_encrypt_key <key>

形式

名称	説明
<key></key>	暗号化キー。

分類

Project

説明

「-bit_encrypt」と併用することによりユーザーは暗号化キーをカスタ マイズできます。デフォルトは全部0です。

パラメータ

<key>:暗号化キー。

例

set_option -bit_encrypt_key 00000000000000000000000001101

-bit_security

セキュリティ・ビットを有効にするかどうかを指定します。

構文

-bit_security <0|1>

形式

名称	説明
<0 1>	0:セキュリティ・ビットを有効にしません。
	1: セキュリティ・ビットを有効にします。

分類

Project

説明

セキュリティ・ビットを有効にするかどうかを指定します。デフォル トは1です。

パラメータ

<0|1>: セキュリティ・ビットを有効にするかどうかを指定します。 例

set option -bit security 1

-bit incl bsram init

BSRAMの初期値をビットストリームファイルに書き込みます。

構文

-bit incl bsram init <0|1>

形式

名称	説明
<0 1>	 0:BSRAMの初期値をビットストリームファイルに書き込みません。 1:BSRAMの初期値をビットストリームファイルに書き込みます。

分類

Project

説明

BSRAM の初期値をビットストリームファイルに書き込みます。デフ オルトは1です。GW1N(X)シリーズおよびGW2A(X)シリーズの場合、1 にセットすると、すべての位置の BSRAM の初期値がビットストリーム ファイルに書き込まれます(占有されていない BSRAM 位置の初期値は0 として取り扱われます)。GW5A(N)(S)(R)(T)デバイスの場合、1 にセット すると、占有された BSRAM の所在列にあるすべての BSRAM の初期値 がビットストリームファイルに書き込まれます(この列の占有されていな

いBSRAM 位置の初期値は0として取り扱われます)。

パラメータ

<0|1>: BSRAM の初期値をビットストリームファイルに書き込むか どうかを指定します。

例

set_option -bit_incl_bsram_init 1

-bg_programming

バックグラウンド・アップグレード機能。

構文

-bg_programming <off | jtag | i2c | goconfig | userlogic | i2c_jtag_sspi_qsspi | jtag_sspi_qsspi>

形式

名称	説明
<off jtag i2c goconfig userlogic i2c_jtag_sspi_qsspi jtag_sspi_qsspi></off jtag i2c goconfig userlogic 	off:バックグラウンド・アップグレー ド機能を有効にしません。
	jtag:JTAGモードでバックグラウン ド・アップグレードを実行します。
	i2c:l2Cモードでバックグラウンド・ アップグレードを実行します。
	goconfig:goConfig IPでバックグラウ ンド・アップグレードを実行します。
	userlogic:FPGAの内部論理でバック グラウンド・アップグレードを実行し ます。
	i2c_jtag_sspi_qsspi: I2C/JTAG/SSPI/QSSPIモードでバック グラウンド・アップグレードを実行し ます。
	jtag_sspi_qsspi : JTAG/SSPI/QSSPIモ ードでバックグラウンド・アップグレ ードを実行します。

分類

Project

説明

FPGAの動作を中断しないまま **FPGA** をプログラムするバックグラウンド・アップグレード機能です。デフォルトは off です。

パラメータ

< off | jtag | i2c | goconfig | userlogic | i2c_jtag_sspi_qsspi |
jtag_sspi_qsspi> : バックグラウンド・アップグレードの方法。

例

set_option -bg_programming userlogic

-hotboot

ホットブートモード。

構文

-hotboot <0|1>

形式

名称	説明
<0 1>	0:ホットブートモードを使用しません。
	1:ホットブートモードを使用します。

分類

Project

説明

ホットブートモードを使用するかどうかを指定します。デフォルトは 0です。

パラメータ

<0|1>:ホットブートモードを使用するかどうかを指定します。

例

set option -hotboot 1

-i2c_slave_addr

I2C デバイスのアドレスを設定します。

構文

-i2c_slave_addr <value>

形式

名称	説明
<value></value>	I2C デバイスのアドレスを設定します。

分類

Project

説明

I2C デバイスのアドレスを設定します。範囲は 00~7F。デフォルトは 00 です。

パラメータ

<value> : I2C デバイスのアドレス。

例

set_option -i2c_slave_addr 2F

-secure_mode

セキュアモードを有効にします。

構文

-secure mode <0|1>

形式

名称	説明
<0 1>	0: セキュアモードを有効にしません。
	1:セキュアモードを有効にします。

分類

Project

説明

セキュアモードを有効にすると、JTAG ピンは GPIO となり、デバイ スは1回しかプログラムできなくなります。デフォルトは0です。

パラメータ

<0|1>: セキュアモードを有効にするかどうかを指定します。

例

set_option -secure_mode 1

-loading_rate

AutoBoot コンフィギュレーション・モードおよび MSPI コンフィギ ュレーション・モードでの、Flash から SRAM へのビットストリームデ ータの読み込み速度。

構文

-loading_rate <value>

形式

名称	説明
<value></value>	AutoBootコンフィギュレーション・モードおよびMSPI コンフィギュレーション・モードでの、Flashから SRAMへのビットストリームデータの読み込み速度。

分類

Project

説明

AutoBoot コンフィギュレーション・モードおよび MSPI コンフィギ ュレーション・モードでの、Flash から SRAM へのビットストリームデ ータの読み込み速度。デフォルトは 2.500MHz です。

SUG100-4.4.2J

パラメータ

<value> : Flash から SRAM へのビットストリームデータの読み込み 速度。

例

set_option -loading_rate 21.000MHz

-seu_handler

シングル・イベント・アップセット・ハンドラを有効にするか選択します。

構文

-seu_handler <0|1>

形式

名称	説明
<0 1>	 0:シングル・イベント・アップセット・ハンドラを有効にしません。 1:シングル・イベント・アップセット・ハンドラを有効にします。

分類

Project

説明

シングル・イベント・アップセット・ハンドラを有効にするか選択し ます。デフォルトは**0**です。

パラメータ

<0|1>:シングル・イベント・アップセット・ハンドラを有効にする か選択します。

例

set_option -seu_handler 1

-seu_handler_mode

SEU Handler を開始または停止するモードを選択します。

構文

-seu_handler_mode <auto|userlogic>

形式

名称	説明
<0 1>	auto:チップのウェイクアップ後、シングル・イベン ト・アップセット・ハンドラが自動的に有効にされま す。 userlogic:ロジックを使用してシングル・イベント・ア

ップセット・ハンドラを有効または無効にします。

分類

Project

説明

SEU Handler を開始または停止するモードを選択します。デフォルトは auto です。

パラメータ

<auto|userlogic>: SEU Handler を開始または停止するモードを選択 します。

例

set_option -seu_handler_mode userlogic

-seu_handler_checksum

シングル・イベント・アップセット・ハンドリング、検出、計算、比 較を有効にするか選択します。

構文

-seu_handler_checksum <0|1>

形式

名称	説明
<0 1>	 0:シングル・イベント・アップセット・ハンドリング、検出、計算、比較を有効にしません。 1:シングル・イベント・アップセット・ハンドリング、検出、計算、比較を有効にします。

分類

Project

説明

シングル・イベント・アップセット・ハンドリング、検出、計算、比 較を有効にするか選択します。デフォルトは**0**です。

パラメータ

<0|1>:シングル・イベント・アップセット・ハンドリング、検出、 計算、比較を有効にするか選択します。

例

set_option -seu_handler_checksum 1

-error_detection

エラー検出のみを有効にします。

構文

-error_detection <0|1>

形式

名称	説明
<0 1>	0:エラー検出を有効にしません。
	1:エラー検出のみを有効にします。

分類

Project

説明

エラー検出のみを有効にします。デフォルトは0です。

パラメータ

<0|1>: エラー検出のみを有効にするかどうかを指定します。

例

set_option -error_detection 1

-error_detection_correction

エラーの検出と訂正を有効にします。

構文

-error detection correction <0|1>

形式

名称	説明
<0 1>	0:エラーの検出と訂正を有効にしません。
	1:エラーの検出と訂正を有効にします。

分類

Project

説明

エラーの検出と訂正を有効にします。デフォルトは0です。

パラメータ

<0|1>:エラーの検出と訂正を有効にするかどうかを指定します。

例

set_option -error_detection_correction 1

-stop_seu_handler

SEU Handler を停止します。

構文

-stop_seu_handler <0|1>

形式

名称	説明
<0 1>	0:訂正不可能なECCエラーまたはCRCチェックサム・ミ スマッチ・エラーが検出された場合、SEU Handlerを停止 しません。
	1:訂正不可能なECCエラーまたはCRCチェックサム・ミ スマッチ・エラーが検出された場合、SEU Handlerを停止 します。

分類

Project

説明

訂正不可能な ECC エラーまたは CRC チェックサム・ミスマッチ・エ ラーが検出された場合、SEU Handler を停止します。デフォルトは0で す。

パラメータ

<0|1>: SEU Handler を停止するかどうかを指定します。

例

set_option -stop_seu_handler 1

-osc_div

拡張コントロール・レジスタの分周値を設定します。

構文

-osc div <4|8|16|32>

形式

名称	説明
<4 8 16 32>	4:拡張コントロール・レジスタの分周値を4に設定します。
	8:拡張コントロール・レジスタの分周値を8に設定します。
	16:拡張コントロール・レジスタの分周値を16に設定 します。
	32:拡張コントロール・レジスタの分周値を32に設定 します。

分類

Project

説明

拡張コントロール・レジスタの分周値を設定します。デフォルトは8 です。 パラメータ

<4|8|16|32>: 拡張コントロール・レジスタの分周値。

例

set_option -osc_div 8

-error_injection

エラー挿入を有効にします。

構文

-error_injection <0|1>

形式

名称	説明
<0 1>	0:エラー挿入を有効にしません。
	1:エラー挿入を有効にします。

分類

Project

説明

エラー挿入を有効にします。デフォルトは0です。

パラメータ

<0|1>: エラー挿入を有効にするかどうかを指定します。

例

set_option -error_injection 1

-ext_cclk

外部マスター・コンフィギュレーション・クロックを有効にします。

構文

-ext_cclk <0|1>

形式

名称	説明
<0 1>	 0:外部マスター・コンフィギュレーション・クロックを 有効にしません。 1:外部マスター・コンフィギュレーション・クロックを 有効にします。

分類

Project

説明

外部マスター・コンフィギュレーション・クロックを有効にします。

デフォルトは0です。

パラメータ

<0|1>:外部マスター・コンフィギュレーション・クロックを有効に するかどうかを指定します。

例

set_option -ext_cclk 1

-ext_cclk_div

分周器のパラメータを設定します。

構文

-ext_cclk_div <value>

形式

名称	説明
<value></value>	分周器のパラメータ。

分類

Project

説明

分周器のパラメータを設定します。

パラメータ

< value>: 分周器のパラメータを設定します。

例

set_option -ext_cclk_div 4

-multi_boot

Multi Boot を有効にするかどうかを指定します。

構文

-multi_boot <0|1>

形式

名称	説明
<0 1>	0: Multi Bootを有効にしません。
	1: Multi Bootを有効にします。

分類

Project

説明

Multi Boot を有効にするかどうかを指定します。デフォルトは0です。

パラメータ

<0|1>: Multi Boot を有効にするかどうかを指定します。

例

set_option -multi_boot 1

-multiboot_address_width

SPI Flash アドレスの幅を構成します。

構文

-multiboot_address_width<24|32>

形式

名称	説明
<24 32>	24:SPI Flashアドレスの幅を24に構成します。
	32:SPI Flashアドレスの幅を32に構成します。

分類

Project

説明

SPI Flash アドレスの幅を構成します。デフォルトは24です。

パラメータ

<24|32>: SPI Flash アドレスの幅。

例

set_option -multiboot_address_width 32

-multiboot_spi_flash_address

SPI Flash アドレスを指定します。

構文

-multiboot_spi_flash_address <value>

形式

名称	説明
<value></value>	SPI Flash アドレス。

分類

Project

説明

SPI Flash アドレスを指定します。SPI Flash アドレスは、次の multiboot の際にビットストリームファイルが読み込まれる開始アドレス で、デフォルトは 000000 です。 パラメータ

<value>: SPI Flash アドレス。

例

set_option -multiboot_spi_flash_address 000110

-multiboot_mode

SPI Flash のアクセスモードを構成します。

構文

-multiboot_mode <single | fast | dual | quad>

形式

名称	説明
< single fast dual quad >	single:singleモードを使用します。
	fast:fastモードを使用します。
	dual:dualモードを使用します。
	quad:quadモードを使用します。

分類

Project

説明

SPI Flash のアクセスモードを構成します。デフォルトは single で

す。

パラメータ

< single | fast | dual | quad > : SPI Flash のアクセスモード。

例

set_option -multiboot_mode single

-mspi_jump

MSPI JUMP を有効にするかどうかを指定します。

構文

-mspi_jump<0|1>

形式

名称	説明
<0 1>	0:MSPI JUMPを有効にしません。
	1:MSPI JUMPを有効にします。

分類

Project

説明

MSPI JUMP を有効にするかどうかを指定します。デフォルトは0で

す。

パラメータ

<0|1>: MSPI JUMP を有効にするかどうかを指定します。

例

set_option -mspi_jump 1

-merge_jumpbit

MSPI JUMP ビットストリームファイルを汎用ビットストリームファ イルにマージします。

構文

-merge_jumpbit <0|1>

形式

名称 1	说明
<0 1> 0 /):ビットストリームファイルをマージしませ ん。 1:ビットストリームファイルをマージします

分類

Project

説明

MSPI JUMP ビットストリームファイルを汎用ビットストリームファ イルにマージするか選択します。デフォルトは0です。

パラメータ

<0|1>: MSPI JUMP ビットストリームファイルを汎用ビットストリー ムファイルにマージするかどうかを指定します。

例

set_option -merge_jumpbit 1

-mspijump_address_width

SPI Flash アドレスの幅を構成します。

構文

-mspijump_address_width <24|32>

形式

名称	説明
<24 32>	24:SPI Flashアドレスの幅を24に構成します。
	32:SPI Flashアドレスの幅を32に構成します。

分類

Project

説明

SPI Flash アドレスの幅を構成します。デフォルトは24です。

パラメータ

<24|32>: SPI Flash アドレスの幅。

例

set_option - mspijump_address_width 32

-mspijump_spi_flash_address

SPI Flash アドレスを指定します。

構文

-mspijump_spi_flash_address <value>

形式

名称	説明
<value></value>	SPI Flashアドレス。

分類

Project

説明

SPI Flash アドレスを指定します。デフォルトは 000000 です。

パラメータ

<value> : SPI Flash アドレス。

例

set_option - mspijump_spi_flash_address 000110

-mspijump_mode<single | fast | dual | quad>

SPI Flash のアクセスモードを構成します。

構文

-mspijump_mode <single | fast | dual | quad>

形式

名称	説明
< single fast dual quad >	single:singleモードを使用します。
	fast:fastモードを使用します。
	dual:dualモードを使用します。
	quad:quadモードを使用します。

分類

Project

説明

SPI Flash のアクセスモードを構成します。デフォルトは single です。

パラメータ

< single | fast | dual | quad > : SPI Flash のアクセスモード。

例

set_option -mspijump_mode single

-program_done_bypass

```
新しいビットストリームデータを転送します。
```

構文

-program_done_bypass <0|1>

形式

名称	説明
<0 1>	0 :この機能を有効にしません。
	1:この機能を有効にします。

分類

Project

説明

Done Final 信号が有効になった場合、外部の Done 信号を Low のま まにすることにより、ビットストリームがロードされた後に新しいビット ストリームデータを転送できるようにします。デフォルトは0です。

パラメータ

<0|1>:新しいビットストリームデータを転送する機能を有効にする かどうかを指定します。

例

set_option -program_done_bypass 1

-power_on_reset_monitor <0|1>

パワーオンリセット。

構文

-power_on_reset_monitor <0|1>

形式

名称	説明
<0 1>	0:パワーオンリセット機能を有効にしません。 1:パワーオンリセット機能を有効にします。

分類

Project

説明

パワーオンリセット機能の制御。デフォルトは0です。

パラメータ

<0|1>:パワーオンリセット機能を有効にするかどうかを指定します。

例

set_option -power_on_reset_monitor 1

-turn_off_bg

Bandgap 機能。

構文

-turn off bg <0|1>

形式

名称	説明
<0 1>	0:Bandgap 機能を有効にします。
	1:Bandgap機能を有効にしません。

分類

Project

説明

Bandgap 機能の制御。デフォルトは0です。

パラメータ

<0|1>: Bandgap 機能を有効にするかどうかを指定します。

例

set_option -turn_off_bg 1

-wakeup_mode

Wake Up Mode を有効にするかどうかを指定します。

構文

-wakeup_mode <0|1>

形式

名称	説明
<0 1>	0:Wake Up Modeを有効にしません。
	1:Wake Up Modeを有効にします。

分類

Project

説明

Wake Up Mode を有効にするかどうかを指定します。デフォルトは0です。

パラメータ

<0|1>: Wake Up Mode を有効にするかどうかを指定します。

例

set_option -wakeup_mode 1

-user_code

User Code をカスタマイズします。

構文

-user_code <default|value>

形式

名称	説明
<default value></default value>	User Codeの値をカスタマイズします。

分類

Project

説明

User Code をカスタマイズできます。デフォルトは default(0000000)です。

パラメータ

<default|value> : User Code をカスタマイズします。

例

set_option -user_code 00000010

注記:

BitStream のオプションの詳細については、このドキュメントの 4.3.3 セクションの BitStream を参照してください。

Unused Pin の属性の構成

-unused_pin

未使用 GPIO の IO 属性を設定します。

構文

-unused_pin <default|open_drain>

形式

名称	説明

<default open_drain></default open_drain>	default:未使用のGPIOを、弱いプルアップを持 つトライステート入力として構成します。
	open_drain:未使用のGPIOを出力として構成します(OPEN DRAINはオン)。

分類

Project

説明

未使用 GPIO の IO 属性を設定します。

パラメータ

<default|open_drain>: 未使用 GPIO の IO 属性を設定します。

例

set_option -unused_pin open_drain

注記:

Unused Pin のオプションの詳細については、このドキュメントの4.3.3 セクションの Unused Pin を参照してください。

8.3.20 set_property

オブジェクトの属性を設定します。

構文

set_property [-dict <args>] <name> <value> <objects>

形式

名称	説明
[-dict]	設定される属性ペア (name/value) のリスト
<name></name>	設定される属性の名前。-dictを使用する場合は無効です
<value></value>	設定される属性の値。-dictを使用する場合は無効です
<objects></objects>	設定される属性のオブジェクト

分類

IPFlow

説明

指定された IP オブジェクトのオプションとそれに対応するオプション値を設定します。

パラメータ

[-dict]: 複数のオプションとそれに対応するオプション値のペアを含む辞書を指定します。ペアは(<name> <value>)で指定され、複数のペアはスペースで区切られます。辞書は中括弧{}で囲む必要があります。

- <name>: 設定されるオプションの名前を指定します。説明の形式は CONFIG.propertyです。ここで、propertyはオプション名を指しま す。
- <value>:設定されるオプションに対応するオプション値を指定します。属性タイプに応じて値を決定する必要があります。オプション値が文字列の場合、元の形式である必要があります。
- <objects>: 設定されるオプションの1つまたは複数のIP オブジェクトを指定します。1つのオブジェクトは[get_ips module_name]で指定されます。複数のオブジェクトは、[get_ips module_name0 module_name1 …] で指定されます。

例

-dict オプションを使用して現在のデザインで複数の属性を一度に指定 します:

set_property -dict {CONFIG.Data_Width 16 CONFIG.Write_Depth 1024 CONFIG.Read_Depth 1024} [get_ips FIFO_Top]

(name, value, objects) を使用して現在のデザインで**1**つの属性を指 定します。

set_property CONFIG.Data_Width {16} [get_ips FIFO_Top]

この例では、ダッシュ「-」またはスペースを含む属性値を設定する 方法を示します。

set_property {CONFIG.Almost_Full_Type} {Full-Single Threshold Constant Parameter} [get_ips FIFO_Top]

注記:

場合によっては、オプション値にダッシュ「-」やスペースなどの特殊文字が含まれることがあるため、オプション値が正しく解析されない可能性があります。この場合、オプション値を中括弧{}で囲む必要があります。

関連項目

- list property
- report property

8.3.21 source

Gowin ソフトウェアの Tcl コマンド編集ウィンドウで、またはコマン ド・ライン・モードを開始した後、このコマンドを使用して Tcl スクリプ トを実行します。ファイルパスの形式については、<u>8.3.1 add file</u>を参照 してください。

構文

source <file>

形式

名称	説明
----	----

SUG100-4.4.2J

<file></file>	実行されるTclスクリプト。
---------------	----------------

分類

IPFlow, Project

説明

未使用 GPIO の IO 属性を設定します。

パラメータ

<file>:実行される Tcl スクリプトファイル。

例

source project.tcl

source D:/gowin_project/project.tcl

source D:¥¥gowin_project¥¥project.tcl

8.3.22 write_ip_tcl

Tcl スクリプトをエクスポートします。このスクリプトは、指定された IP を再生成できます。

構文

write_ip_tcl [-ip_name <newModuleName>] [-multiple_files] [-force]
[<tcl_filename>] <objects>

形式

名称	説明
[-ip_name]	IP のモジュール名
[-multiple_files]	IP オブジェクトごとに.tcl ファイルを作成します
[-force]	既存のファイルを上書きします
[<tcl_filename>]</tcl_filename>	エクスポートされる tcl ファイル
<objects></objects>	エクスポートされる tcl ファイルの IP オブジェクト

分類

IPFlow

説明

このコマンドは、指定された IP オブジェクトの Tcl スクリプトファイ ルをエクスポートします。ファイルパスの形式については、<u>8.3.1 add_file</u> を参照してください。

パラメータ

- [<tcl_filename>]: 生成される Tcl スクリプトファイルの名前。指定しない場合は、現在のプロジェクト名が使用されます。
- <objects>: Tcl スクリプトが生成される1つまたは複数のIP オブジェ クトを指定します。1つのオブジェクトは[get_ips module_name]で指

定されます。複数のオブジェクトは、[get_ips module_name0 module_name1 …] で指定されます。

- [-ip_name <newModuleName>]: 生成された Tcl スクリプト内の IP の module_name を変更します。1 つのオブジェクトのみを指定できま す。
- [-multiple_files]:指定されたすべての IP に対して Tcl スクリプトファ イルを生成します。スクリプト名は、対応する IP の module_name に 基づいて命名されます。このオプションは、-ip_name および <tcl_filename>と相互に排他的です。
- [-force]:同じ名前の既存のTclファイルを上書きします。

例

この例では、IP オブジェクト FIFO_Top に対して FIFO_Top_new と いう名前の Tcl ファイルが作成されます。

write_ip_tcl -ip_name FIFO_Top_new [get_ips FIFO_Top]

この例では、指定された IP モジュールごとに個別の Tcl ファイルが作 成されます。

write_ip_tcl -multiple_files [get_ips FIFO_Top FIFO_Top_1]

この例では、指定された複数の IP モジュールが 1 つの Tcl ファイルに 書き込まれます。

write_ip_tcl [get_ips FIFO_Top FIFO_Top_1] my_fifo.tcl

9 付録

9.1 ファイルの説明

Gowin ソフトウェアは、プロジェクトに物理制約やタイミング制約 などのファイルを追加することをサポートしています。デザインの合成や 配置配線の際、様々な実行ファイルが生成されます。ここでは、Gowin ソフトウェアがサポートしている様々なファイルタイプを表形式で紹介し ます。

表 9-1 ソースファイル

タイプ	定義	説明
.gsc	合成の制約ファイル	合成ツール GowinSynthesis のための制約 ファイル
.ipc	IP 構成ファイル	IP Core Generator は、.ipc ファイルを読 み込んで、その構成を変更して IP を再生 成することができます。
.cst	物理制約ファイル	設計に物理制約を追加するために使用され ます。
.sdc	タイミング制約ファイ ル	設計にタイミング制約を追加するために使 用されます。
.fi	User Flash の初期化フ ァイル	プログラマでビットストリームをダウンロ ードする際にロードできる User Flash の 初期化ファイルあり、User Flash を初期化 します。
.rao	RTL レベルの GAO 構 成ファイル	合成最適化前の RTL 信号のキャプチャに 使用されます。
.gao	合成後の GAO 構成フ ァイル	合成最適化後のネットリスト信号のキャプ チャに使用されます。
.gvio	仮想入力出力の構成フ ァイル	内部 FPGA 信号をリアルタイムで監視お よび駆動するために使用されます。
.gpa	消費電力解析の構成フ ァイル	設計の消費電力の解析に使用されます。

タイプ	定義	説明
.mi	メモリ初期化ファイル	メモリの初期化に使用されます。 この初 期化ファイルは、IP Core Generator でメ モリを生成する際に使用されます。
.v	Verilog ソースファイル	回路の構造と機能を記述した Verilog 記述 ファイル
.sv	System Verilog ソース ファイル	回路の構造と機能を記述した System Verilog 記述ファイル
.vhd	VHDL ソースファイル	回路の構造と機能を記述した VHDL 記述フ ァイル

表 9-2 実行ファイル

タイプ	定義	説明
.vg	合成後のネットリスト・ ファイル	GowinSynthesis による合 成後に生成されたネット リスト・ファイル
_syn.rpt.html	合成レポートファイル	合成後のリソース使用量 やタイミング解析などの 情報を提供します。
.fs	BitStream ファイル	プログラマによりダウン ロードされます。
.bin	bin 形式の BitStream ファ イル	プログラマによりダウン ロードされます。
.ekey	キー・ファイル	暗号化されたビットスト リームファイルを Programmer によるダウ ンロードの際に復号化す るために使用されます。
.vo	配置配線後の Verilog 形式 のタイミングシミュレー ション・モデルファイル	タイミングシミュレーシ ョンのためのフラット化 構造の Verilog モデルファ イル
.vho	配置配線後の VHDL 形式 のタイミングシミュレー ション・モデルファイル	タイミングシミュレーシ ョンのためのフラット化 構造の VHDL モデルファ イル
.sdf	標準の遅延形式ファイル	配置配線後のネットリス ト・タイミングシミュレ ーションに使用されま す。
.ibs	入出力バッファ情報指定 ファイル	_
.tr	テキスト形式のタイミン グレポート	-

タイプ	定義	説明
.rpt.txt	テキスト形式の配置配線 レポート	_
.rpt.html	html 形式の配置配線レポ ート	_
.tr.html	html 形式のタイミング解 析レポート	_
.pin.html	html 形式のポート属性レ ポート	_
.power.html	html 形式の消費電力解析 レポート	-
.p	インクリメンタル配置フ ァイル	インクリメンタル配置に 使用されます
.pr	インクリメンタル配置配 線ファイル	インクリメンタル配置配 線に使用されます

9.2 ファイルおよびフォルダの命名規則

Gowin ソフトウェアのフォルダとファイルの命名規則:名前に? "/ ¥<>*|:文字は使用できません。フォルダ名にはスペースは使用できません。ファイル名にはスペースが使用できますが、名前の先頭または末尾に置くことはできません。

Gowin ソフトウェアのダイアログボックスにファイルのパス名を記入する際に、上記の規則を満たしているかどうかが判断され、満たさない場合はプロンプトウィンドウが表示されます。

9.3 セキュリティ・ステートメント

インストールと使用中、Gowin ソフトウェアは、バックグラウンドで ユーザーに関する情報を収集したり、ネットワーク・データ・ポートにア クセスしたりせず、すべてのデータと情報はローカルに保持されます。ソ フトウェアの自動更新も行われません。

