GOWIN

PROGRAMMING FOR THE FUTURE

GowinSynthesis

User Guide

SUG550-1.8E, 08/09/2024

Copyright © 2024 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.
dodde
GOWIN is a trademark of Guangdong Gowin Semiconductor Corporation and is
registered in China, the U.S. Patent and Trademark Office, and other countries. All other
words and logos identified as trademarks or service marks are the property of their
respective holders. No part of this document may be reproduced or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without the
prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied)
and is not responsible for any damage incurred to your hardware, software, data, or
property resulting from usage of the materials or intellectual property except as outlined in
the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this
document at any time without prior notice. Anyone relying on this documentation should
contact GOWINSEMI for the current documentation and errata.

Revision History

Date Version Description
08/02/2019 1.0E Initial version published.
12/09/2019 11E "Naming Rules of Objects before/after Synthesis" added. (Gowin

Software V1.9.3 and above)

03/03/2020 1.2E VHDL syntax design supported. (Gowin Software V1.9.5 and above)

® "Synthesis Naming Rules" modified.

05/29/2020 1.3E ® "syn_sristyle" and "syn_noprune" attribute added.

09/14/2020 1.4E "black_box_pad_pin" attribute added.

® ‘"parallel_case" and "syn_black box" attributes added;

10/28/2021 158 ® Chapter 6 Report Document modified.

06/30/2023 1.6E Chapter 5 Synthesis Constraints Support updated.

® Chapter 4 HDL Code Support updated.

05/09/2024 1.7E Chapter 5 Synthesis Constraints Support updated.

o
® Screenshots in Chapter 6 Report Document updated.
o

Descriptions of the number of synthesis attribute constraint
08/09/2024 1.8E objects added.
Figure 6-4 Timing updated.

Contents

Contents
CONEENTS ... i
List Of FIQUIeSo e e iii
List Of TADIES...........ooeeeeee e iv
1 About ThisS GUIE............oooiviiiiiiiiiiiiiiiii e 1
LT PUIDOSE e ————————— 1
1.2 Related DOCUMENTSccoiiiiii ittt e e e s snreee e 1
1.3 Terminology and Abbreviation ..., 1
1.4 SuppOort and FEEADACKcuiiiiiiiiiiic e e e e 1
O =T T U 2
3 GowinSynthesis USage ... 3
3.1 Input and Output of GOWINSYNINESISooiiiiiiiii e 3
3.2 Use GowinSynthesis for SYNthesis.........cuviiiiiiiiiiii e 3
3.3 Naming Rules of Objects Pre/Post Synthesiscccooiviiiiiiii e 3
3.3.1 Naming of the Post-synthesis Netlist File............cccccoriiiiii 3
3.3.2 Naming of the Post-synthesis Netlist Module..............cceiiiii 4
3.3.3 Naming of the Post-synthesis Netlist InStanceccccccoiiiii 4
3.3.4 Naming of the Post-synthesis Netlist Wiring ..o 4
4 HDL COde SUPPOILooeiieeiiieeei e e e e e e e e e 5
4.1 Register HDL COdEe SUPPOIT........ciiiiiiiieiiiiiee ettt ettt e et e e et e e s sbreeeeans 5
4.1.1 An Introduction to Register Features ... 5
4.1.2 Constraints Related with REQISTer ... 5
4.1.3 Register Code EXamPIE ..ot 5
4.2 RAM HDL CO0E SUPPOITeeiiiiiiiie ettt ettt sttt aanee s 11
4.2.1 An Introduction to RAM Inference FUNCHON............cccoeiiiiiiiiii e 11
4.2.2 An Introduction 10 RAM FEAtUrEScocviiiiiiiiiiii et 11
4.2.3 Constraints Related with RAM INfEreNnCeccooiiiiiiiiiiiii e 11
4.2.4 RAM Inference Code EXamMPIEc..ooiiiiiiiiiiiiiii e 12
4.3 DSP HDL Code SUPPOIt ... 19
4.3.1 Basic Introduction to DSP INfErenCe..........cooiiiiiiiiiiiiie e 19
4.3.2 Introduction 0 DSP FEALUIESc.eeiiiiiiiiieiiie e 19

SUG550-1.8E i

Contents

4.3.3 Constraints Related With DSPcooiiiiii e 19
4.3.4 DSP Inference Code EXamPIE.......c..ouiiiiiiiiiiiiiii et 19
4.4 Synthesis Implementation Rules for Finite State Machine................cccccooinnnn, 26
4.4.1 Synthesis Rules for Finite State Machine..........cccccccooviiiiiiiii e, 26
4.4.2 Finite State Machine Code EXamPIecooo it 26
5 Synthesis Constraints Support...............cooooii 29
LTI o] F=Tod [q o To)Gl o T- Lo [o1 o [PP UOTPPRSRT 30
L {0 o= T PR STURRRRR 32
5.3 PArAlIE]_CASE.....eeeeiiiieii e e e e e e e e e e aann 33
5.4 SYN_DIACK DOX ..etiiiiiiiiiii e e e e e e e 34
5.5 SYN_ASPSIYIE ... a e 36
5.6 SYN_ENCOAING. .. .eeiiiiiiiiii ittt ettt e e e ettt e e st b e e e e sabb e e e e aabae e e e abbeeeeabreeeean 37
5.7 SYN_INSEIT_PAA ..coiiiiiiii ittt e s e e e 38
5.8 SYN_KEBEP ittt b et e e e et b e e e e arreeaeaa 39
5.9 SYN_TOOPIMIL ...t a e 40
5.10 SYN_MAXFAN ...eeiiiiiiiii e e et e e e ea e 40
5.11 syn_Netlist_NierarChy ... 42
5,12 SYN_NMOPIUNEceiiiieiie ittt ettt e et e e e st et e e e s bb e e e e aabb e e e e aabaeeeeabbeeeesbreeaeans 43
D18 SYN_PIESEIVE ...eiiiitiiie ittt ettt e e ettt e e st bt e e et e e e e abae e e e e bb e e e abreeaeaa 44
514 SYN_PIODE ...t e e e e e e e 45
5,15 SYN_TAMSIYIE ...t a e 46
5,16 SYN_TOMSIYIE ...eiiiiiiie ettt e et e e e st e e et e e s nr e e e aa 48
D17 SYN_SHSLYIE ... 49
5.18 syn_tIvds_i0/SYN_EIVAS 10uiiiiiiiiiii it 51
5.19 translate_off/ Translate_On ... 52
6 Report DoCUMENt ... 54
6.1 SYNthESIS MESSAGE.t e e e e e e e e 54
6.2 SYNthesiS DEtailscoooiiiiiiiii e 54
B.3 RESOUICE ...ceeiitiiee ittt ettt ettt e e ettt e e st e e e st e e e e s n et e e s nr e e e e anreeeeaa 55
L0 {0 Yo o [P TP PP PP UUPPTPPPPTPN 56

SUG550-1.8E ii

List of Figures

List of Figures

Figure 4-1 Synchronous Reset Clock Flip-flop in Example 1 ... 6

Figure 4-2 Synchronous Set Flip-flop with Clock Enable in Example 2..........cccccccoiiiiiinn 7

Figure 4-3 Asynchronous Reset Flip-flop with Clock Enable in Example 3..........ccoooiiiiiiiiiiiiiinnnn. 8

Figure 4-4 Latch with Reset and High Level Enable in Example 4..........ccccccvvieeee 9

Figure 4-5 Synchronous Reset Clock Flip-flop and Logic Circuit in Example 5cccccccoeeiinnnee. 9

Figure 4-6 Common Clock Flip-flop with an Initial Value of 0 and Logic Circuit in Example 6 10
Figure 4-7 Asynchronous Set Flip-flop in EXamMPIE 7cooeiiiiiiiiiiieiie e 11
Figure 4-8 RAM Circuit Diagram in EXample 1. 12
Figure 4-9 RAM Circuit Diagram in EXamPle 2.........cccciiiiiiei e re e 13
Figure 4-10 RAM Circuit Diagram in EXample 3.......ocuiiiiiiiiii e 14
Figure 4-11 RAM Circuit Diagram in EXample 4 ..o 15
Figure 4-12 RAM Circuit Diagram in EXample 5......cocuiiiiiiiii e 16
Figure 4-13 pROM Circuit Diagram in EXample 6 ... 17
Figure 4-14 RAM Circuit Diagram in EXample 7ocueiiiiiiii e 18
Figure 4-15 DSP Circuit Diagram in EXample 1 ... 21
Figure 4-16 DSP Circuit Diagram in EXample 2 ... 23
Figure 4-17 DSP Circuit Diagram in EXample 3 ... 24
Figure 4-18 DSP Circuit Diagram in EXample 4 ... 25
Figure 4-19 DSP Circuit Diagram in EXample 5 ... 26
Figure 6-1 SYNthesiS MESSAJEuuiiiiiiiiiiie e e e e e e aeeeee e 54
Figure 6-2 Synthesis DetailSuuiiiiiiii e 55
FIGUIE 6-3 RESOUITEceiiitiiiiiiiieie ettt ettt skt s bbbt e e sttt e e e et e e e e s eabe e e e s aanneeas 55
(o [N cI N 011 o o PRSPPI 56
Figure 6-5 Max FrequenCy SUMMAIYooiiiiiiiiiiiiie et 56
Figure 6-6 Path SUMMAIYoouiiiiii et 56
Figure 6-7 Connection Relation, Delay and Fanout Informationcccccciiiiiii e, 57
Figure 6-8 Path StatiStiCScooi i 57

SUG550-1.8E iii

List of Tables

List of Tables

Table 1-1 Abbreviations and TErMiINOIOGYcccoiuiiiiiiiiiieii e 1

SUG550-1.8E iv

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

It mainly describes functions and operations of GowinSynthesis and
aims to help you learn how to use this software and improve design
efficiency. The software screenshots in this manual are based on Gowin
Software 1.9.10.01. As the software is subject to change without notice,
some information may not remain relevant and may need to be adjusted
according to the software that is in use.

1.2 Related Documents

The user guides are available on the GOWINSEMI Website. You can
find the related documents at www.gowinsemi.com: SUG100, Gowin
Software User Guide

1.3 Terminology and Abbreviation

Table 1-1 shows the abbreviations and terminology that are used in

this guide.

Table 1-1 Abbreviations and Terminology

Terminology and Abbreviation Meaning

BSRAM Block Static Random Access Memory
DSP Digital Signal Processing

FPGA Field Programmable Gate Array

FSM Finite State Machine

GSC Gowin Synthesis Constraint File
SSRAM Shadow Static Random Access Memory

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive
technical support. If you have any questions, comments, or suggestions,
please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com

E-mail: support@gowinsemi.com

SUG550-1.8E 1(57)

https://www.gowinsemi.com/en/
http://cdn.gowinsemi.com.cn/SUG100E.pdf
http://cdn.gowinsemi.com.cn/SUG100E.pdf
https://www.gowinsemi.com/en/
mailto:support@gowinsemi.com

2 Overview

SUG550-1.8E

2 Overview

This is the user guide of Gowin RTL design synthesis tool
GowinSynthesis.

GowinSynthesis is designed in-house by GOWINSEMI, and it uses
Gowin original EDA algorithm to realize RTL design extraction, arithmetic
optimization, inference, resource sharing, parallel synthesis and mapping
based on product hardware characteristics and hardware circuit resources,
which can quickly optimize your RTL design, resource check, and timing
analysis.

GowinSynthesis, targeting Gowin FPGA chips, provides the most
efficient design implementation method for FPGA designers.
GowinSynthesis can generate a post-synthesis netlist based on the Gowin
device primitive library, which can be used as an input file for the PnR,
achieving the optimal balance of area and speed, improving software
compilation efficiency, and routing rate. The software has the following
features:

® Supports Verilog/SystemVerilog, VHDL and mixed design input.

® Supports ultra-large-scale design, providing an excellent synthesis
solution for complex programmable logic designs.

® Supports inferred mapping of look-up tables, registers, latches, and
arithmetic logic units.

Supports memory inferred mapping and logic resources balancing.
Supports DSP inferred mapping and logic resources balancing.
Supports synthesis optimization of FSM

Supports synthesis attributes and instructions to meet the synthesis
requirements in different applications.

2(57)

3 GowinSynthesis Usage 3.1 Input and Output of GowinSynthesis

3 GowinSynthesis Usage

3.1 Input and Output of GowinSynthesis

GowinSynthesis reads user's RTL file in the format of project file (.prj),
and the project file is automatically generated by Gowin Software. In
addition to the specified user RTL file, GowinSynthesis project file also
specifies the synthesis device, the user constraints file including attribute
constraints, post-synthesis netlists file (.vg), and some synthesis options,
such as top module, files including paths, etc.

3.2 Use GowinSynthesis for Synthesis

Right-click "Synthesize" in the "Process" view of Gowin Software,
select "Configuration ". In the Configuration page, you can specify top
module, set include path, and select language versions, and configure
options.

Double-click "Synthesize" in "Process" view of Gowin Software to
perform synthesis, and the "Output" view will output the synthesis
information. The synthesis report and gate level netlist file will be generated
after synthesis. Double-click the "Synthesis Report" and "Netlist File" in the
"Process" view to check the specific contents.

For the further detailed operation, see SUG100, Gowin Software User
Guide > 4.4.3 Synthesize.

3.3 Naming Rules of Objects Pre/Post Synthesis

For user-friendly verification and debugging, GowinSynthesis
synthesis tool will reserve the original user RTL design info. in maximum,
such as the module info., primitive/module instance name, the user-defined
wire/reg name in user designs, etc. For the objects that must be
optimized/converted and to be regenerated, the name will be created
according to the user-defined wiring name and some derivative rules. The
rules are described in the sections below.

3.3.1 Naming of the Post-synthesis Netlist File

The post-synthesis netlist file name depends on the specified output
netlist file name in project file (*.prj).

SUG550-1.8E 3(57)

http://cdn.gowinsemi.com.cn/SUG100E.pdf
http://cdn.gowinsemi.com.cn/SUG100E.pdf

3 GowinSynthesis Usage 3.3 Naming Rules of Objects Pre/Post Synthesis

If the post-synthesis netlist file name is not specified in project file, the
name is created as the same as the project file with a .vg suffix.

3.3.2 Naming of the Post-synthesis Netlist Module

The post-synthesis netlist module name is consistent with RTL design
name. Modules that are instantiated multiple times are distinguished by the
suffix "_idx", and the module's instantiation name is consistent with the RTL
design.

3.3.3 Naming of the Post-synthesis Netlist Instance

If there is Instance in user RTL design and it is not optimized in the
process of synthesis, the Instance name stays the same in the
post-synthesis netlist.

For the Instance generated in the process of synthesis, the Instance
name comes from the the external output signal name of the function
design module in the user RTL. If the function design module has multiple
output signal, the Instance name depends on the first output signal name.

For the Instance generated in the process of synthesis, the Instance
name contains the names described above, and they are also followed by
a suffix based on type. The "buf" types are suffixed with "_ibuf", "_obuf",

" _iobuf", and for others with "_s", the number after "s" is the number of
times the name is referenced by the node.

When flatten is specified to output, if the original submodule Instance
name needs hierarchy, "/" can be used as hierarchical separator.

3.3.4 Naming of the Post-synthesis Netlist Wiring

SUG550-1.8E

For the user-defined wire/reg signal in RTL design, if the signal is not
optiminzed in the process of synthesis, the related module name of the
post-synthesis netlist stays the same.

In the process of synthesis using GowinSynthesis, some whole
functional design modules in some RTL designs will be replaced or
optimized. After synthesis, the output signal name of these functional
design modules in netlist will be kept. For the internal signal of these
modules, the name will be derived from the name of the output signal. The
related digital suffix (_idx) will be added on the basis of the original signal
name.

When the multi-bit signal name (the bus format) is used as the derived
signal name and other signal names or Instance name is derived, the bus
bit in the singal name will be kept in the form of "_idx".

When flatten is specified to output, " " can be used as hierarchical
separator.

4(57)

4 HDL Code Support

4.1 Register HDL Code Support

4 HDL Code Support

4.1 Register HDL Code Support

4.1.1 An Introduction to Register Features

The registers contain flip-flops and latches.
Flip-flop

The flip-flops are all D flip-flops, and the initial value is assigned when
defined. There are two types of reset/set: Synchronous and asynchronous.
Synchronous reset/set means that only when the posedge or negedge of
CLK arrives, and reset/set is at high level, can the reset/set be completed.
Asynchronous reset/set means the level change from low to high of
reset/set will lead to the output change immediately, but not controlled by
CLK.

Latch

The latches trigger includes high-level trigger and low-level trigger, and
the initial value is assigned when defined. In FPGA design, it is best to
avoid latches. High level trigger is when the control signal is high; the latch
allows the data signal to pass through. Low level trigger is when the control
signal is low; latch allows the data signal to pass through.

4.1.2 Constraints Related with Register

You can constrain register by the preserve attribute. When this
constraint exists, except the registers that are suspended will be optimized,
all the other registers will be preserved in the synthesis results. Please see
syn_preserve for details.

4.1.3 Register Code Example

SUG550-1.8E

The initial value of Gowin synchronous reset clock flip-flop can only be
set to 0. The initial value of synchronous set clock flip-flop can only be set
to 1. When the initial value of the synchronous clock flip-flop in the RTL is
different from the initial value of Gowin synchronous clock, GowinSynthesis
will convert the type of synchronous clock flip-flop based on the initial value
in the RTL. Asynchronous clock flip-flop does not be handled. Specific
conversion strategies are:

5(57)

4 HDL Code Support 4.1 Register HDL Code Support

SUG550-1.8E

RTL is designed as synchronous reset clock flip-flop. When the initial
value is set to 1, GowinSynthesis will replace it with synchronous set clock
flip-flop. Add related logic to the original synchronous reset signal to realize
synchronous set function.

RTL is designed as synchronous set clock flip-flop. When the initial
value is set to 0, GowinSynthesis will replace it with normal flip-flop. Add
related logic to the original synchronous set signal as the input of the
flip-flop data end.

Not specify the Initial Value of Flip-flop

The only difference between CLK posedge flip-flop and CLK negedge
flip-flop is that CLK triggers in different ways, so the following list is only the
examples of CLK rising edge flip-flop.

Example 1 can be synthesized as synchronous reset clock flip-flop.
module top (q, d, clk, reset).
input d.
input clk.
input reset.
output q.
reg q_reg.
always @(posedge clk)begin
if(reset)
q_reg<=1'b0.
else
q_reg<=d.
end
assign q = q_reg.
endmodule

Synchronous reset clock flip-flop is as shown in Figure 4-1.
Figure 4-1 Synchronous Reset Clock Flip-flop in Example 1

d
q
clk DFFR -

— > g_reg

reset

Example 2 can be synthesized as synchronous set flip-flop with clock
enable.

6(57)

4 HDL Code Support

4.1 Register HDL Code Support

SUG550-1.8E

module top (q, d, clk, ce, set).
input d.
input clk.
input ce.
input set.
output q.
reg q_reg.
always @(posedge clk)begin
if(set)
q_reg<=1'b1.
else if(ce)
q_reg<=d.
end
assign q = q_reg.
endmodule

Synchronous set flip-flop with clock enable is as shown in Figure 4-2.
Figure 4-2 Synchronous Set Flip-flop with Clock Enable in Example 2

d
B

q
ce DFFSE .

q_reg
clk

set

Example 3 can be synthesized as asynchronous reset flip-flop with
clock enable.

module top (q, d, clk, ce, clear).
input d.
input clk.
input ce.
input clear.
output q.
reg q_reg.
always @(posedge clk or posedge clear)begin
if(clear)
q_reg<=1'b0.

7(57)

4 HDL Code Support 4.1 Register HDL Code Support

else if(ce)
q_reg<=d.
end

assign q = q_reg.

endmodule
Asynchronous reset flip-flop with clock enable is as shown in Figure
4-3.
Figure 4-3 Asynchronous Reset Flip-flop with Clock Enable in Example 3
d
q
ce
D(l;l:eSE ;
clk B

clear T

Example 4 can be synthesized as latch with reset and high level
enable.

module top(d,g,clear,q,ce);
input d,g,clear,ce;
output q;
reg q_reg;
always @(g or d or clear or ce) begin
if(clear)
q_reg <=0;
else if(g && ce)
q_reg <=d;
end
assign q = q_reg;
endmodule

The latch with reset and high level enable is shown as in Figure 4-4.

SUG550-1.8E 8(57)

4 HDL Code Support 4.1 Register HDL Code Support

Figure 4-4 Latch with Reset and High Level Enable in Example 4
d
q
ce
%Lrgg E 5
g _

I

clear f

Specify the Initial Value of Flip-flop

Example 5 is synchronous reset clock flip-flop with an initial value of 0.
Set an initial value of 1 in RTL, which will be synthesized as synchronous
set clock flip-flop with an initial value of 1 and a logic circuit for synchronous
reset.

module top (q, d, clk, reset).
input d.
input clk.
input reset.
output q.
reg q_reg = 1b1.
always @(posedge clk)begin
if(reset)
q_reg<=1'b0.
else
q_reg<=d.
end
assign q = q_reg.
endmodule

Synchronous reset clock flip-flop above is as shown in Figure 4-5.
Figure 4-5 Synchronous Reset Clock Flip-flop and Logic Circuit in Example 5

d
reset 'E—V DEES q
L q_reg >
SET
GND

Example 6 is synchronous set clock flip-flop with an initial value of 1,
but its initial value is 0 in RTL; and this synchronous set clock flip-flop will

SUG550-1.8E 9(57)

4 HDL Code Support

4.1 Register HDL Code Support

SUG550-1.8E

be synthesized as common clock flip-flop with an initial value of 0 and a
logic circuit for synchronous set.

module top (q, d, clk, set).
input d.
input clk.
input set.
output q.
reg q_reg = 1'b0.
always @(posedge clk)begin
if(set)
q_reg<=1'b1.
else
q_reg<=d.
end
assign q = q_reg.
endmodule

The common clock flip-flop with the initial value of 0 and logic circuit
are shown in Figure 4-6.

Figure 4-6 Common Clock Flip-flop with an Initial Value of 0 and Logic Circuit in

Example 6
d
—»
set | —>
> DFF
clk a9
o

Example 7 is an asynchronous set flip-flop with an initial value of 1.

module top (q, d, clk, ce, preset).

input d.

input clk.

input ce.

input preset.
output q.

reg q _reg = 1b1.

always @(posedge clk or posedge preset)begin

if(preset)
q_reg<=1'b1.

10(57)

4 HDL Code Support 4.2 RAM HDL Code Support

else if(ce)
q_reg<=d.
end
assign q = q_reg.
endmodule

Asynchronous set flip-flop above is as shown in Figure 4-7.
Figure 4-7 Asynchronous Set Flip-flop in Example 7

d

. q
ce DEEP ,
clk e

preset T

4.2 RAM HDL Code Support
4.2.1 An Introduction to RAM Inference Function

RAM inference is one step in RTL synthesis to infer block memory
primitives (BSRAM and SSRAM) in FPGA to implement memory functions
in user design so that you can write device-independent RTL or use
embedded block ram functionality in FPGA. For RTL memory blocks,
GowinSynthesis will infer the RTL that meets the corresponding conditions
to RAM module according to RTL description.

If the design needs to implement by BSRAM, the following principles
need to be met:

1. All output registers have the same control signal.

2. RAM must be synchronous memory and can not connect to
asynchronous control signal. GowinSynthesis does not support
asynchronous RAM.

3. It needs to connect registers at read address or output port.
4.2.2 An Introduction to RAM Features
BSRAM

There are four configuration modes for BSRAM: single-port, dual-port,
semi-dual-port and read-only. Read mode includes pipeline and bypass.
Write mode includes normal, write-through and read-before-write.

SSRAM

There are three configuration modes for SSRAM: Single-port,
semi-dual-port and read-only. SSRAM does not support dual-port mode.

4,2.3 Constraints Related with RAM Inference

Syn_ramstyle specifies how memory is inferenced, and syn_romstyle

SUG550-1.8E 11(57)

4 HDL Code Support 4.2 RAM HDL Code Support

specifies how read-only memory is implemented.

If the design needs to generate SSRAM or BSRAM, please use
ram_style, rom_style or syn_sristyle constraint statement.

For constraint syntax use, please see syn_ramstyle_ and syn_romstyle.

4.2.4 RAM Inference Code Example

According to the different features of RAM, examples are as follows:

Example1 is a memory with one write port, one read port and the same
read and write address, which can be synthesized to a single port BSRAM
in normal mode.

module normal(data_out, data_in, addr, clk,ce, wre,rst).
output [7:0]data_out.
input [7:0]data_in.
input [7:0]addr.
input clk,wre,ce,rst.
reg [7:0] mem [255:0].
reg [7:0] data_out.
always@(posedge clk or posedge rst)
if(rst)
data_out <= 0.
else
if(ce & Iwre)
data_out <= mem[addr].
always @(posedge clk)
if (ce & wre)
mem/[addr] <= data_in.
endmodule
The above single-port BSRAM circuit diagram is shown in Figure 4-8.
Figure 4-8 RAM Circuit Diagram in Example 1

addr waddr
raddr

data_in =—)» DI DOUT N
mem reg =P data_out
ce —> ce >
wre > wre A
> clk
clk

rst

SUG550-1.8E 12(57)

4 HDL Code Support 4.2 RAM HDL Code Support

Example 2 is a memory with one write port, one read port and the
same read and write address. When wre is 1, input data can be transferred
directly to output, which can be synthesized to single-port BSRAM in
normal write mode.

module wt11(data_out, data_in, addr, clk, wre,rst);
output [31:0]data_out;
input [31:0]data_in;
input [6:0]addr;
input clk,wre,rst;
reg [31:0] mem [127:0];
reg [31:0] data_out;
always@(posedge clk or posedge rst)
if(rst)
data_out <= 0;
else if(wre)
data_out <= data_in;
else
data_out <= memf[addr];
always @(posedge clk)
if (wre)
mem/[addr] <= data_in;
endmodule

The above single-port BSRAM circuit diagram is shown in Figure 4-9.
Figure 4-9 RAM Circuit Diagram in Example 2

data_in J—} DI

waddr _» waddr

raddr > radd DOUT
mem reg r—P data_out
ce —p ce >
wre » wre A
I clk
o1k >

rst

Example 3 is a memory with one write port, one read port and the
same read and write address. When wre is 1, input data is written to
memory, which can be synthesized to single-port BSRAM in
read-before-write mode.

SUG550-1.8E 13(57)

4 HDL Code Support 4.2 RAM HDL Code Support

module read_first_01(data_out, data_in, addr, clk, wre);
output [31:0]data_out;
input [31:0]data_in;
input [6:0]addr;
input clk,wre;
reg [31:0] mem [127:0];
reg [31:0] data_out;
always @(posedge clk)
begin

if (wre)

mem/[addr] <= data_in;
data_out <= memf[addr];
end
endmodule
The above single-port BSRAM circuit diagram is shown in Figure 4-10.
Figure 4-10 RAM Circuit Diagram in Example 3

data_in J—} DI

waddr _’ waddr

raddr P radd DOUT
mem reg > data_out
ce —> ce #>
wre pl re A
I clk
clk >

rst

Example 4 is a memory with two write ports and one read port. One of
the two write ports has a wre signal and the other does not. The read port
absorbs asynchronous reset register. This example can be synthesized to
asynchronous reset dual-port BSRAM with A port in normal write mode and
B port in read-before-write mode or in register output read mode.

module read_first_02_1(data_outa, data_ina, addra, clka, rsta,cea,
wrea,ocea, data_inb, addrb, clkb, ceb);

output [17:0]data_outa;

input [17:0]data_ina,data_inb;
input [6:0]addra,addrb;

input clka, rsta,cea, wrea,ocea;
input clkb, ceb;

SUG550-1.8E 14(57)

4 HDL Code Support

4.2 RAM HDL Code Support

SUG550-1.8E

data inb
addrb

—>
data_ina = DIA

—>

—>

reg [17:0] mem [127:0];
reg [17:0] data_outa;
reg [17:0] data_out_rega,data_out _regb;
always @(posedge clkb)
if (ceb)
mem/[addrb] <= data_inb;

always@(posedge clka or posedge rsta)
if(rsta)

data_out_rega <= 0;
else begin

data_out_rega <= mem[addra];
end
always@(posedge clka or posedge rsta)
if(rsta)

data_outa <= 0;
else if (ocea)

data_outa <= data_out rega;
always @(posedge clka)
if (cea & wrea)

mem/[addra] <= data_ina;

endmodule

The above dual-port BSRAM circuit diagram is shown in Figure 4-11.

Figure 4-11 RAM Circuit Diagram in Example 4

clkb

ceb
ceb <J

addrb

addra

addra DIB
clkb

<—
mem DOUT |——pp| T€8

cea cea

v

reg

—Pdata outa

wrea

clka clka

rsta

ocea

15(57)

4 HDL Code Support 4.2 RAM HDL Code Support

Example 5 is a memory with one read port and one write port and
different read and write addresses, which can be synthesized to
semi-dual-port BSRAM in normal write mode or in bypass read mode.

module read_first_ wp_pre_1(data_out, data_in, waddr, raddr,clk,
rst,ce);

output [10:0]data_out;
input [10:0]data_in;
input [6:0]raddr,waddr;
input clk, rst,ce;
reg [10:0] mem [127:0];
reg [10:0] data_out;
always@(posedge clk or posedge rst)
if(rst)

data_out <= 0;
else if(ce)

data_out <= memfraddr];
always @(posedge clk)
if (ce) mem[waddr] <= data_in;
endmodule

The above semi-dual-port BSRAM circuit diagram is shown in Figure
4-12.

Figure 4-12 RAM Circuit Diagram in Example 5

waddr =P waddr
raddr = raddr

data_in =——pp DI DOUT N
mem reg =P data_out
ce —p ce >
wre A
wre —>
» clk
clk

rst

Example 6 is a memory with one read port and an initial value, which
can be synthesized to asynchronous set read-only memory in bypass read
mode.

module test_invce (clock,ce,oce,reset,addr,dataout) ;
input clock,ce,oce,reset;

input [5:0] addr;

output [7:0] dataout;

SUG550-1.8E 16(57)

4 HDL Code Support

4.2 RAM HDL Code Support

SUG550-1.8E

addr _> raddr

e —p, mem

clock

reset

reg [7:0] dataout;
always @(posedge clock or posedge reset)
if(reset) begin

dataout <= 0;
end else begin
if (ce & oce) begin
case (addr)
6'b000000: dataout <= 32'h87654321;
6'b000001: dataout <= 32'h18765432;
6'b000010: dataout <= 32'h21876543;
6'b111110: dataout <= 32'hdef89aba;
6'b111111: dataout <= 32'hef89abce;
default: dataout <= 32'hf89abcde;
endcase
end
end
endmodule
The above read-only memory circuit diagram is shown in Figure 4-13.

Figure 4-13 pROM Circuit Diagram in Example 6

ce _» ce
DOUT =P

reg P dataout

wre

\ 4
V

clk

\ 4

Example 7 is a memory with shift-register mode, which can be

synthesized to simple-dual-port BSRAM in normal mode.

module seqshift_bsram (clk, din, dout) ;
parameter SRL_WIDTH = 65;
parameter SRL_DEPTH = 16;

input clk;

input [SRL_WIDTH-1:0] din;

17(57)

4 HDL Code Support

4.2 RAM HDL Code Support

4-14

output [SRL_WIDTH-1:0] dout;
reg [SRL_WIDTH-1:0] regBank[SRL_DEPTH-1:0] ;
integer i;
always @(posedge clk) begin
for (i=FSRL_DEPTH-1; i>0; i=i-1) begin
regBank[i] <= regBank[i-1];

end

regBank[0] <= din;
end
assign dout = regBank[SRL_DEPTH-1];
endmodule

The above semi-dual-port BSRAM circuit diagram is shown in Figure

Figure 4-14 RAM Circuit Diagram in Example 7

din

Note!

y y y y
FF FF FF FF
\ 4 \ 4 \ 4 h 4
FF FF FF FF

v v v v

FF FF FF FF

dout

For more examples, please see GowinSynthesis _Inference Coding Template at
Gowinsemi official website.

SUG550-1.8E

18(57)

https://www.gowinsemi.com/en/support/database/925/

4 HDL Code Support 4.3 DSP HDL Code Support

4.3 DSP HDL Code Support
4.3.1 Basic Introduction to DSP Inference

DSP inference is an algorithm that infers and permutes multiplication
and partial addition in user design to DSP in RTL synthesis. When
designing RTL, you can either instantiate DSP or write DSP description in
device-independent RTL. For the multiplication and addition module of RTL,
GowinSynthesis will permute RTL description meeting corresponding
conditions with corresponding DSP module.

DSP module has functions of multiplication, addition and register.
GowinSynthesis uses logic circuits to realize multiplier functions when the
current device does not support DSP modules.

4.3.2 Introduction to DSP Features

Gowin DSP includes multiplier, multiply add accumulator and preadder.
The following functions are supported:

Supports multiplication permutation of different sign bits input
Supports synchronous or asynchronous mode

Supports multiplication chain addition

Supports multiplication accumulation

Supports pre-add function

o o0 bk wDdE

Supports register absorption, including input register, output register,
bypass register

4.3.3 Constraints Related with DSP

Syn_dspstyle is used to control the multipliers or specific objects using
DSP or logic circuits.

Syn_perserve is used to reserve registers. When register around the
DSP has this property, the DSP cannot absorb this register.

For the constraint statements, please see syn_dspstyle and
syn_preserve.

4,3.4 DSP Inference Code Example

Example 1 can be synthesized to synchronous set multiplier with sign
bit. The input registers are ina and inb. The output register is out_reg, and
the bypass register is pp_reg.

module top(a,b,c,clock,reset,ce).
parameter a_width = 18.
parameter b_width = 18.
parameter ¢_width = 36.

input signed [a_width-1:0] a.
input signed [b_width-1:0] b.

SUG550-1.8E 19(57)

4 HDL Code Support

4.3 DSP HDL Code Support

SUG550-1.8E

input clock.
input reset.
input ce.
output signed [c_width-1:0] c.
reg signed [a_width-1:0] ina.
reg signed [b_width-1:0] inb.
reg signed [c_width-1:0] pp_reg.
reg signed [c_width-1:0] out reg.
wire signed [c_width-1:0] mult_out.
always @(posedge clock) begin
if(reset)begin
ina<=0.
inb<=0.
end else begin
if(ce)begin
ina<=a.
inb<=b.
end
end
end
assign mult_out=ina*inb.
always @(posedge clock) begin
if(reset)begin
pp_reg<=0.
end else begin
if(ce)begin
pp_reg<=mult_out.
end
end
end
always @(posedge clock) begin
if(reset)begin
out_reg<=0.
end else begin
if(ce)begin

20(57)

4 HDL Code Support 4.3 DSP HDL Code Support

out_reg<=pp_reqg.
end
end
end
assign c=out_reg.
endmodule
The above multiplier circuit diagram is shown in Figure 4-15.
Figure 4-15 DSP Circuit Diagram in Example 1
a =

reg

v
V

clock

reg 9 reg > .

_I\.I_T_A Vg \ W, N
ce b o\ M

reset

Example 2 can be synthesized to a multiplier accumulator in
asynchronous mode, which has input registers a0_reg, a1_reg, b0_reg and
b1_reg, output register s_reg and bypass registers p0_reg and p1_reqg.

module top(a0, a1, b0, b1, s, reset, clock, ce).
parameter a0_width=18.

parameter a1_width=18.

parameter bO_width=18.

parameter b1_width=18.

parameter s_width=37.

input unsigned [a0_width-1:0] a0.
input unsigned [a1_width-1:0] a1.
input unsigned [b0_width-1:0] bO.
input unsigned [b1_width-1:0] b1.
input reset, clock, ce.

output unsigned [s_width-1:0] s.

wire unsigned [s_width-1:0] pO, p1, p.
reg unsigned [a0_width-1:0] a0 _reg.
reg unsigned [a1_width-1:0] a1_reg.
reg unsigned [b0_width-1:0] b0 _reg.

SUG550-1.8E 21(57)

4 HDL Code Support 4.3 DSP HDL Code Support

reg unsigned [b1_width-1:0] b1_reg.
reg unsigned [s_width-1:0] p0O_reg, p1_reg, s_req.
always @(posedge clock or posedge reset)
begin
if(reset)begin
a0_reg <= 0.
al_reg <=0.
b0_reg <= 0.
b1 _reg <= 0.
end else begin
if(ce)begin
al_reg <= a0.
al_reg <= af.
b0_reg <= b0.
b1 _reg <= b1.
end
end
end
assign p0 = a0 _reg*b0 _reg.
assign p1 =al1_reg*b1_reg.
always @(posedge clock or posedge reset)
begin
if(reset)begin
p0_reg <= 0.
p1_reg <=0.
end else begin
if(ce)begin
p0_reg <= p0.
p1_reg <=p1.
end
end
end
assign p =p0_reg - p1_reg.
always @(posedge clock or posedge reset)
begin

SUG550-1.8E 22(57)

4 HDL Code Support 4.3 DSP HDL Code Support

if(reset)begin
s _reg <= 0.
end else begin
if(ce) begin
s reg <=p.
end
end
end
assign s = s_reg.

endmodule
The above multiplier accumulator circuit diagram is shown in Figure
4-16.
Figure 4-16 DSP Circuit Diagram in Example 2
a0 —Pp
reg
>
reg
_»>
4
b0 —M—P reg
>
| reg P s
al —n—p i
A
reg
>
~ reg
y
bl —P—P
reg
>
clock
reset

Example 3 can be synthesized to two unsigned bit multipliers, which
are in chain addition relation.

module top(a0, a1, a2, b0, b1, b2, a3, b3, s).

parameter a_width=18.

parameter b_width=18.

parameter s_width=36.

input unsigned [a_width-1:0] a0, a1, a2, b0, b1, b2, a3, b3.

SUG550-1.8E 23(57)

4 HDL Code Support

4.3 DSP HDL Code Support

SUG550-1.8E

output unsigned [s_width-1:0] s.
assign s=a0*b0+a1*b1+a2*h2+a3*b3.
endmodule

The above multiplier accumulator circuit diagram is shown in Figure

4-17.
Figure 4-17 DSP Circuit Diagram in Example 3

a0

b0

al

bl
a2

b2
ad

b3

Example 4 can be synthesized to a multiplier with sign-bit 0 and a

preadder with sign-bit 0. An input port of this multiplier is connected to the

outp

ut port b of the preadder.
module top(a, bX, bY, p).
parameter a_width=36.
parameter b_width=18.
parameter p_width=54.
input [a_width-1:0] a.
input [b_width-1:0] bX, bY.
output [p_width-1:0] p.
wire [b_width-1:0] b.
assign b = bX + bY.
assign p = a*b.
endmodule

The above multiplier accumulator circuit diagram is shown in Figure

4-18.

24(57)

4 HDL Code Support 4.3 DSP HDL Code Support

Figure 4-18 DSP Circuit Diagram in Example 4
bX

bY

Example 5 can be synthesized to a multiplier accumulator with sign-bit
0, and the output register is s.

module acc(a, b, s, accload, reset, ce, clock).
parameter a_width=36. //18 36
parameter b_width=18. //18 36
parameter s_width=54. //54
input unsigned [a_width-1:0] a.
input unsigned [b_width-1:0] b.
input accload, reset, ce, clock.
output unsigned [s_width-1:0] s.
wire unsigned [s_width-1:0] s_sel.
wire unsigned [s_width-1:0] p.
reg [s_width-1:0] s.
assignp =a*b .
assign s_sel = (accload == 1'b1) ? s : 54'h0000000.
always @(posedge clock)
begin
if(reset)begin
s<=0.
end else begin
if(ce)begin
s<=s sel +p.
end
end
end
endmodule

The above multiplier accumulator circuit diagram is shown in Figure
4-19.

SUG550-1.8E 25(57)

4 HDL Code Support 4.4 Synthesis Implementation Rules for Finite State Machine

Figure 4-19 DSP Circuit Diagram in Example 5

a

reg P s
>
b
A
gnd
accload
clock
reset
ce
Note!

For more examples, please see GowinSynthesis_Inference _Coding_Template at
Gowinsemi official website.

4.4 Synthesis Implementation Rules for Finite State
Machine

4.4.1 Synthesis Rules for Finite State Machine

GowinSynthesis supports the synthesis of Finate State Machine
(FSM), and the encoding mode supports one-hot code, gray code, binary
code, etc. The synthesis results of finite state machine are related to its
encoding mode, code number, code bit width and code constraints. Without
specifying encoding constraints, GowinSynthesis automatically selects
one-hot code, Gray code, or binary code to implement state machine. With
specifying encoding constraints, the code method specified by the
constraints should be implemented first. For the code constraints of state
machine, please see syn_encoding.

Note!

It should be noted that if the output of the finite state machine drives the output port directly,
GowinSynthesis will not synthesize it as a state machine, and the code constraints of the
state machine will be ignored.

4.4.2 Finite State Machine Code Example

The synthesis rules for finite state machine are described below.
One-hot Code State Machine

If the state machine adopts one-hot code for coding in RTL design,
GowinSynthesis will select one-hot code by default to realize the functions
of the state machine with no code constraints. In the case of code
constraints, the functions of the state machine are realized according to the
encoding mode specified by the constraints. One-hot encoding mode
example is as follows:

SUG550-1.8E 26(57)

https://www.gowinsemi.com/en/support/database/925/

4 HDL Code Support

4.4 Synthesis Implementation Rules for Finite State Machine

SUG550-1.8E

reg [3:0] state,next_state;

parameter state0=4'b0001;
parameter state1=4'b0010;
parameter state2=4'b0100;
parameter state3=4'b1000;

In the above example, RTL uses one-hot code and GowinSynthesis
uses one-hot code to implement.

Gray Code State Machine

If the state machine adopts gray code for coding in the RTL design,
GowinSynthesis will select gray code by default to realize the functions of
the state machine with no code constraints. In the case of code constraints,
the functions of the state machine are realized according to the encoding
mode specified by the constraints. Gray code example is as follows:

reg [3:0] state,next_state;
parameter state0=2'b00;
parameter state1=2'b01;
parameter state2=2'b11;
parameter state3=2'b10;

In the above example, RTL uses gray code and GowinSynthesis uses
gray code to implement.

Binary Code or other Codes State Machines

If the state machine adopts binary code in RTL design, which is neither
one-hot code nor gray code, GowinSynthesis will select the corresponding
code according to the number of codes and bit width for implementation
with no constraints. The selection principle is as follows: If the number of
code is greater than the effective bit width of code, binary code will be used
for implementation. If the number of code is less than or equal to the
effective bit width of code, one-hot code will be used for implementation. In
the case of code constraints, the functions of state machine are realized
according to the encoding mode specified by the constraints.

Example 1

reg [5:0] state,next_state;
parameter state0= 6'b000001;
parameter state1= 6'b000011;
parameter state2= 6'b000000;
parameter state3= 6'b010101;

In the above example, the number of code is 4, the bit width of code is
6, and the effective bit width is 5, so the number of code is less than the
effective bit width of code, and the implementation is carried out by one-hot
code.

27(57)

4 HDL Code Support

4.4 Synthesis Implementation Rules for Finite State Machine

SUG550-1.8E

Example 2

reg [2:0] state,next_state;

parameter state0=3'b001;

parameter state1=3'b010;

parameter state2=3'b011;

parameter state3=3'b100;

In the above example, the number of code is 4, and the effective bit

width of code is 3. The number of code is larger than the effective bit width
of code, and the implementation is carried out by binary code.

Example 3
reg [5:0] state,next_state.
parameter stateO= 1,
parameter state1= 3,
parameter state2= 6,
parameter state3= 15.
In the above example, the number of code is 4 in decimal, and the

effective bit width converted into binary is 4 bits. The number of code is
equal to the effective bit width of code, and the implementation is carried
out by one-hot code.

28(57)

5 Synthesis Constraints Support

SUG550-1.8E

5 Synthesis Constraints Support

Attribute constraints is used to set various attributes of optimization
selection, function implement, output netlist format in synthesis so that the
synthesis results can better meet the design function and usage. Attributes
can be written in constraint files or embedded in source code.

This chapter describes the syntax for constraints in RTL files and
GowinSynthesis Constraint (GSC) files. Verilog files are case-sensitive, so
instructions and attributes must be typed exactly as described in the syntax.
An attribute constraint must be written in the same line in a constraint
statement and can not be separated by breaks, and a semicolon must be
added at the end of the statement.

Constraints in RTL File

Constraints in the RTL file must be added in the definition statement of
the constraint object before the semicolon. Each attribute constraint can
only be applied to a single constraint object. To constrain multiple objects,
you need to add the attribute constraint multiple times, such as "reg dout1
/synthesis syn_preserve=1/, dout2 /synthesis syn_preserve=1/;" or "reg
dout1 /synthesis syn_preserve=1/; reg dout2 /synthesis syn_preserve=1/;".
If the constraint setting_value in the statement is a string, then double
quotes should be added before and after the setting_value. If the
setting_value is a number, then no double quotes are required.

GSC

GSC constraints include Instance constraints, Net constraints, Port
constraints and global objects constraints. In order to distinguish the types,
there are different syntaxes in writing. The constraint object must be
enclosed by double quotation marks. Attribute name and the setting_value
need not be identified by double quotation marks or other sligns, and there
can be spaces before and after the equal sign. GSC constraints support
notes with "//". The examples are as follows:

INS "object" attributeName=setting_value;
NET "object" attributeName=setting_value;
PORT "object" attributeName=setting_value;
GLOBAL attributeName=setting_value;

29(57)

5 Synthesis Constraints Support

The constraint statement begins with INS, and the object must be the
name of instance. Instance includes module/entity instance and primitive
instance. The name of instance does not contain parenthesis. In other
words, don't write temp[15:0] when bus, just write temp instead.

The constraint statement begins with NET, and the constraint object
must be the NET name.

The constraint statement begins with PORT, and the constraint object
must be the PORT name.

The constraint statement begins with GLOBAL, indicating that the
attribute constraint is global.

The name of the object in the constraint must match the one in the
netlist. There can be no spaces in the name. Wildcards are supported in
the name of the object. Use "/" to distinguish the hierarchy of names. Add w
before object to distinguish when using wildcards, such as w "object".

The setting_value may be the value specified directly by the user,
inherited from the super-structure, or the default. The priority of values is
direct value in GSC > direct value in RTL > inherited value in GSC >
inherited value in RTL > default value. When there are multiple inherited
values, take the value closest to the specified name (lowest level). For
example, check the MULT_STYLE attribute of A/D/C/mult1 ("/" indicates
the hierarchy between module names), which has direct value of DSP.
Check MULT_STYLE attribute of "A/D/C", which has no direct value, and
the MULT_STYLE attribute can be inherited, so find and inherit the attribute
value logic of "A/D". Check MULT_STYLE of "A/D/C/mult1", which has both
the inherited value and the direct value. The direct value DSP is finally
taken because of the priority.

5.1 black_box_pad_pin

SUG550-1.8E

Description

Specify that the 10 pads of the black box are visible to the external
environment. This attribute only works for the black box 10 pads.

This attribute can only be specified in the RTL file.
Syntax
Verilog Constraint Syntax
Verilog object /* synthesis black_box_pad_pin=portList */;
VHDL Constraint Syntax
attribute black_box_pad_pin : string;
attribute black_box_pad_pin of object: objectType is portList;

Note!

® object: It can be module or component defined by a black box.

® objectType: The type of object, such as component.

® The PortList enclosed in double quotes is a space-less, comma-separated list of the
ports in the black box.

30(57)

5 Synthesis Constraints Support

5.1 black_box_pad_pin

SUG550-1.8E

Examples

Verilog Constraint Example

module top(clk, in1, in2, out1, out2,D,E);
input clk;

input [1:0]in1;

input [1:0]in2;

output [1:0]Jout1;

output [1:0]Jout2;

output D,E;

black_box_add U2 (in1, in2, out2,D,E);
endmodule

module black_box_add(A, B, C, D,E)/* synthesis syn_black _box

black_box_pad _pin="D,E" */;

input [1:0]A;
input [1:0]B;
output [1:0]C;
output D,E;
endmodule

VHDL Constraint Example

library ieee;

use ieee.std_logic_1164.all;

entity top is

generic (width : integer := 4);

port (in1,in2 : in std_logic_vector(width downto 0);
clk : in std_logic;
q : out std_logic_vector (width downto 0)

);

end top;

architecture top1_arch of top is

component test is

generic (width1 : integer := 2);

port (in1,in2 : in std_logic_vector(width1 downto 0);
clk : in std_logic;

31(57)

5 Synthesis Constraints Support 5.2 full_case

q : out std_logic_vector (width1 downto 0)
);
end component;
attribute black_box_pad_pin : string;
attribute black_box_pad_pin of test : component is "q[4:0]";
begin
test123 : test generic map (width) port map (in1,in2,clk,q);
end top1_arch;

5.2 full case

Description

full_case is only used in Verilog design. When this attribute is added
after a case, casex or casez statement, it means that all possible values
are given and no redundant hardware is required to preserve the signal
values.

This attribute can only be specified in RTL files and only support
Verilog.

Syntax

RTL Constraint Syntax

verilog case /* synthesis full_case*/
Example

RTL Constraint Example

Example 1 specifies that part of the circuit no longer requires
redundant hardware to preserve signal values

module top(...);

always @(select ora or b orc ord)
begin

casez(select) /* synthesis full_case*/
4'b???1: out=a;

4'b1???: out=d;

endcase

end

endmodule

SUG550-1.8E 32(57)

5 Synthesis Constraints Support 5.3 parallel_case

5.3 parallel_case

SUG550-1.8E

The parallel_case is an instruction, which forces to use a
parallel-multiplexed structure instead of a priority-encoded structure.

This instruction can only be specified in the Verilog file.
Description

The case statement is defined in priority order by default, executing
only the first statement that matches the selected value. Priority coding
allows to have input signals at several inputs at the same time, and to code
only the highest priority of the several signals input at the same time in the
priority order.

If the bus selected is driven from outside of the current module and the
current module does not have information about the legal selected value,
the software must create a logical chain of disable in order to match the tag
statement to disable all subsequent statements.

However, if the legal value of the selection is known, the parallel_case
instruction can be used to eliminate the additional priority coding logic.

Syntax
Verilog Constraint Syntax
object /* synthesis parallel_case */;

Note!

® global support: No
® object: case, casex, and casez statements.
® setting_value: No value.

Example
Verilog Constraint Example
module test (out, a, b, c, d, select);
output out;
input a, b, c, d;
input [3:0] select;
reg out;
always @(select ora orb orc ord)
begin
casez (select) /* synthesis parallel_case */
4'b???1: out = a;
4'b??1?: out = b;
4'b?1??: out = c;
4'b1???: out =d;
default: out = 'bx;

33(57)

5 Synthesis Constraints Support 5.4 syn_black _box

endcase
end
endmodule

5.4 syn_black_box

SUG550-1.8E

Description

Specify a module or component as a black box. In synthesis, a black
box module defines only its interface, and its content can not be accessed
or optimized. The module is treated as a black box regardless of whether it
is empty or not.

This attribute can only be specified in the RTL file.
Syntax

Verilog Constraint Syntax

object /* synthesis syn_black box */;

VHDLConstraint Syntax

attribute syn_black_box: boolean;

attribute syn_black _box of object : objectType is true;
Note!

® object: It can only be sub module/entity.
® objectType: The type of object, such as component.

Examples
Verilog Constraint Example
module top(clk, in1, in2, out1, out2);
input clk;
input [1:0]in1;
input [1:0]in2;
output [1:0]Jout1;
output [1:0Jout2;
add U1 (clk, in1, in2, out1);
black_box_add U2 (in1, in2, out2);
endmodule

module add (clk, in1, in2, out1);
begin
out! <=in1 +in2;

end

34(57)

5 Synthesis Constraints Support 5.4 syn_black _box

endmodule

module black_box_add(A, B, C)/* synthesis syn_black box */;
assign C=A +B;
endmodule

Before the attribute used, the content of the module black_box_add is
visible. After the attribute used, the content of the module black _box_add is
not visible and becomes a black box.

VHDL Constraint Example
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;
entity mux2_1_top is

port(
dina : in bit;
dinb : in bit;
sel :in bit;
dout : out bit
);

end mux2_1_top;

architecture Behavioral of mux2_1_top is
attribute syn_black _box: boolean;
attribute syn_black_box of mux2_1 : component is true;

begin
u_ mux2_1:mux2_1
port map(
dina => dina,
dinb => dinb,
sel => sel,
dout => dout
);
end Behavioral;

SUG550-1.8E 35(57)

5 Synthesis Constraints Support 5.5 syn_dspstyle

5.5 syn_dspstyle

SUG550-1.8E

Description

The specified multiplier is implemented by a dedicated DSP hardware
module or logic circuit, which can be applied to both specific module/entity
instance and the global. This attribute can be specified in GSC and RTL
files.

Syntax
GSC Constraint Syntax
INS "object" syn_dspstyle =setting_value;
GLOBAL syn_dspstyle =setting_value;
Verilog Constraint Syntax
Verilog object /* synthesis syn_dspstyle ="setting_value" */;
VHDL Constranit Syntax
attribute syn_dspstyle:string;
attribute syn_dspstyle of object:objectType is "setting_value";

Note!

object: It can be wire, register, module/entity name or module/entity instance name.
objectType: The type of object, such as signal.

setting_value: Multiplier implementation, and currently DSP and logic are supported.
setting_value is logic, inferring object to logic circuit.

setting_value is DSP, inferring object to DSP, which is the default.

Examples
GSC Constraint Example
Example 1 specifies logic to implement instance
INS ‘temp" syn_dspstyle=logic;
INS "aaO/mult/c" syn_dspstyle=logic;
Example 2 specifies logic to implement global multipliers
GLOBAL syn_dspstyle=logic;
Verilog Constraint Example
Example 1 specifies logic to implement all multipliers in mult module.
module mult(...) /* synthesis syn_dspstyle = "logic" */;
wire [15:0] temp;
assign temp = a*b;
Endmodule
Example 2 specifies logic to implement the multiplier temp.

36(57)

5 Synthesis Constraints Support 5.6 syn_encoding

module mult(...) ;
wire [15:0] temp/* synthesis syn_dspstyle = "logic" */ ;
assign temp = a*b;
endmodule
VHDLConstraint Example
Example 1 specifies logic to implement the multiplier result.
entity Mult is
port(

result : out signed(23 downto 0));

attribute syn_dspstyle:string;

attribute syn_dspstyle of result : signal is "logic";
end Mult;

architecture Behavior of Mult is
signal x1 : signed(11 downto 0);
signal y1 : signed(11 downto 0);

begin
result <= x1 *y1;

end Behavior;

5.6 syn_encoding

SUG550-1.8E

Description

Specify the encoding mode of state machine, which can only be
applied to specific objects.

This attribute can only be specified in RTL files.
Syntax
Verilog Syntax
verilog object /* synthesis syn_encoding = "setting_value" */;
VHDLConstraints Syntax
attribute syn_encoding : string;
attribute syn_encoding of object : objectType is "setting_value";

Note!

37(57)

5 Synthesis Constraints Support 5.7 syn_insert_pad

® object: It can be wire, register, module/entity name or module/entity instance name.

® objectType: The type of object, which is typically "type" here.

® setting_value: State machine encoding mode; verilog currently supports one hot;
VHDL currently supports one hot and gray.

Examples
Verilog Example
This example specifies one hot code for the state machine
module test (...);
reg [2:0] ps /* synthesis syn_encoding="onehot " */;
endmodule
VHDL Example
This example specifies one-hot code for the state machine.
ENTITY fsm IS
END fsm;
ARCHITECTURE behaviour OF fsm IS
TYPE state _type IS (s0,s1,s2,83);
SIGNAL present_state,next_state : state_type;
attribute syn_encoding:string;
attribute syn_encoding of state_type:type is "onehot”;
BEGIN

END behaviour;
5.7 syn_insert_pad

Description

Specify whether to insert an I/O buffer. Insert the 1/O buffer when the
attribute value is 1

This attribute can only be specified in GSC files.
Syntax

GSC Constraints Syntax

PORT "object" syn_insert_pad=setting_value;
Note!

® setting_value: 0 or 1. Remove I/O buffer at 0. Insert I/O buffer at 1.
® object: It can only be port. This constraint only applies to input port or output port, not
inout port.

SUG550-1.8E 38(57)

5 Synthesis Constraints Support 5.8 syn_keep

5.8 syn_keep

SUG550-1.8E

Examples

GSC Examples

Example 1 specifies the inserted 1/O buffer
PORT "out" syn_insert_pad=1;

Example 2 specifies the removed I/O buffer
PORT "out" syn_insert_pad=0;

Description

Specify wire as a placeholder and preserve it without optimization; to

preserve "reg," please use "syn_preserve.

This attribute can only be specified in RTL files.

Syntax

Verilog Constraints Syntax

Verilog object /* synthesis syn_keep= setting_value */;
VHDL Constraints Syntax

attribute syn_keep : integer;

attribute syn_keep of object : objectType is 1;

Note!

object: It can only be wire, port and combination logic.

® ObjectType: The type of object, such as signal.

® setting_value: The setting_value can only be 0 or 1. When it is 1, the net is preserved
without optimization.

Examples

Verilog Constraint Example
This example specifies mywire and leaves it unoptimized.
module test (...);

endmodule
VHDL Constraint Example
This example specifies tmp0 and leaves it unoptimized.
entity mux2_1 is
port(

39(57)

5 Synthesis Constraints Support 5.9 syn_looplimit

end mux2_1;
architecture Behavioral of mux2_1 is
signal tmpO:bit;
signal tmp1:bit;
attribute syn_keep : integer;
attribute syn_keep of tmpQ : signal is 1;

end Behavioral:

5.9 syn_looplimit
Description

Specify the limited value of loop iteration. The default is 2000 times. If
it does not specify the time, exceeding the default, there will be an error in
synthesis.

This attribute can only be set in GSC.
Syntax

GSC Constraints Syntax

GLOBAL syn_looplimit=setting_value

Note!

setting_value: It can only be number, meaning the upper limited times in loop
iteration.

Example
GSC Constraints Example
GLOBAL syn_looplimit=3000

5.10 syn_maxfan

Description

Specify max. fanout, which can be applied to both specific objects and
the global.

This attribute can be specified in GSC and RTL files.
Syntax

GSC Constraints Syntax

INS "object" syn_maxfan=setting_value;

NET "object" syn_maxfan=setting_value;

GLOBAL syn_maxfan=setting_value;

Verilog Constraints Syntax

Verilog object /* synthesis syn_maxfan = setting_value */;

VHDL Constraints Syntax

SUG550-1.8E 40(57)

5 Synthesis Constraints Support 5.10 syn_maxfan

SUG550-1.8E

attribute syn_maxfan : integer;
attribute syn_maxfan of object : objectType is setting_value;

Note!

object: It can be wire, register, input, output, module/entity name, module/entity
instance name; it does not work for the inpin related with CLK, CE, LSR.

® objectType: The type of object, such as signal.
® setting_value: Integer greater than 0.
Examples

GSC Examples

Example 1 specifies that the max.fanout of instance is 10.
INS "d" syn_maxfan=10;

Example 2 specifies that the max.fanout of global is 100.
GLOBAL syn _maxfan=100;

Example 3 specifies that the max.fanout of instance is 10.
INS "aa0/mult/d" syn_maxfan=10;

Example 4 specifies that the max.fanout of net is 10.
NET "aaO/mult/d" syn_maxfan=10;

Verilog Examples

Example 1 specifies a maximum fanout value of 3 for all instances in

the module except CLK.

module test (...) /* synthesis syn_maxfan = 3%;
endmodule

Example 2 specifies that the max.fanout of instance is 3.
module test (...);

reg [7:0] d /* synthesis syn_maxfan = 3%/;
endmodule

VHDL Example

entity test is

end test;

architecture rtl of test is

signal d : std_logic;

attribute syn_maxfan : integer;

attribute syn_maxfan of d : signal is 5;

41(57)

5 Synthesis Constraints Support

5.11 syn_netlist_hierarchy

end ril;

5.11 syn_netlist_hierarchy

SUG550-1.8E

Description

Specify whether to generate hierarchy netlists. The default 1 indicates

the generation of hierarchy netlists. When it is set to 0, the hierarchy
netlists will be flattened for output.

This attribute can be specified in GSC and RTL files.
Syntax

GSC Constraint Syntax

GLOBAL syn_netlist_hierarchy=setting_value;

Verilog Constraint Syntax

Verilog object /* synthesis syn_netlist_hierarchy=setting_value */;

VHDL Constraint Syntax
attribute syn_netlist_hierarchy: integer;

attribute syn_netlist_hierarchy of object : objectType is setting_value;

Note!

® object: It can only be the top module/entity.

® objectType: The type of object, such as entity.

® setting_value: The setting_value is 0 or 1. If it is 1, hierarchy is allowed to be
generated. If it is 0, the hierarchy netlists will be flattened for output.

Examples
GSC Example
GLOBAL syn_netlist_hierarchy=0;
Verilog Example
module rp_top (...) /* synthesis syn_netlist_hierarchy=1 */;
endmodule
VHDL Example
entity mux4_1_top is
port(
dina : in bit;
dinb : in bit;
sel :in bit;
dout : out bit
);
attribute syn_netlist_hierarchy: integer;
attribute syn_netlist_hierarchy of mux4_1_top: entity is O;

42(57)

5 Synthesis Constraints Support 5.12 syn_noprune

end mux4_1_top;

5.12 syn_noprune

SUG550-1.8E

Description

Ensure that whether the outputs of module/entity instances, primitive
instances, or black boxes (including primitives) are optimized or not when
left floating. This can be applied to specific objects or globally.

This attribute can only be specified in RTL file.
Syntax
Verilog Constraints Syntax
Verilog object /* synthesis syn_noprune = setting_value */;
VHDL Constraints Syntax
attribute syn_noprune : integer;
attribute syn_noprune of object: objectType is 1;

Note!

® object: It can be module/entity instance name, primitive instance name or black box.

® objectType: The type of object, such as signal.

® setting_value: It can only be 0 or 1. If it is 1, retain instance and black box. If itis 0,
optimize the corresponding instance and black box as needed.

Example
Verilog Constraint Example
module test (out1,out2,clk,in1,in2);

endmodule

module noprube_bb(din,dout);
input din;

output dout;

endmodule

VHDL Constraint Example
library ieee;

use ieee.std_logic_1164.all;
entity top is

end entity top;

architecture arch of top is
component noprune_bb

43(57)

5 Synthesis Constraints Support 5.13 syn_preserve

port(

din : in std_logic;

dout : out std_logic);

end component noprune_bb;

signal o1_noprunereq : std_logic;

signal 02_req : std_logic;

attribute syn_noprune : integer;

attribute syn_noprune of U1: label is 1;

attribute syn_noprune of o1_noprunereq : signal is 1;

end architecture arch;

5.13 syn_preserve

SUG550-1.8E

Description

Specify register or whether to optimize the register logic, which can be

applied to both specific objects and the global.

This attribute can be specified in RTL and GSC files.

Syntax

GSC Constraint Syntax

INS "object" syn_preserve=setting_value;

GLOBAL syn_preserve=setting_value;

Verilog Constraint Syntax

Verilog object /* synthesis syn_preserve = setting_value */;
VHDL Constraint Syntax

attribute syn_preserve : integer;

attribute syn_preserve of object : objectType is setting_value;

Note!

Object: It can be the name of register, module/entity, module/entity instance.
objectType: The type of object, such as signal.

setting_value: 0 or 1. When it is 1, the corresponding register is preserved. When it is
0, the corresponding register is optimized as needed.

Examples

GSC Examples

Example 1 specifies reg1and leaves it unoptimized.

INS "reg1" syn_ preserve =1;

Example 2 specifies that all registers in the design are preserved.
GLOBAL syn_preserve =1;

44(57)

5 Synthesis Constraints Support 5.14 syn_probe

Verilog Examples

Example 1 specifies that all registers in the module are preserved.
module test (...) /* synthesis syn_preserve = 1 %/;

endmodule

Example 2 specifies reg1and leaves it unoptimized.

module test (...).

endmodule

VHDL Example

Example 1 specifies to preserve reg 1.
entity syn_test is

);
end syn_test;
architecture behave of syn_test is

signal reg1 : std_logic;

signal reg2 : std_logic;

attribute syn_preserve : integer;

attribute syn_preserve of reg1: signal is 1;
begin

end behave;

5.14 syn_probe

SUG550-1.8E

Description

This attribute tests and debugs the internal signals in the design by

inserting probe points. The specified probe points appear as ports in the
top-level port list.

This attribute can only be specified in RTL files.

Syntax

Verilog Constraints Syntax
Verilog object /* synthesis syn_probe = setting_value */;
VHDL Constraints Syntax

45(57)

5 Synthesis Constraints Support 5.15 syn_ramstyle

attribute syn_probe: string;
attribute syn_probe of object: objectType is " setting_value ";

Note!

® object: It can only be wire or register.

® objectType: The type of object, such as signal.

® setting_value is 1: Insert the probe point and automatically get the probe port name
according to the net name.

® setting_value is 0: Probe is not allowed.

® setting_value is a string: Insert a specified probe point name. When the name
specified by setting_value is bus, the number is automatically added after the
inserted name.

® GowinSyn does not support the setting_value with the same value as the object
name or the port name of the module.

Examples
Verilog Constraints Example

When probe_tmp is set, probe tmp is listed in output port list of the top
level.

module test (...);

endmodule
VHDL Constraints Example
entity halfadd is

end halfadd;
architecture add of halfadd is
signal probe_tmp: std_logic;
attribute syn_probe: string;
attribute syn_probe of probe_tmp: signal is "probe_string";

End;

5.15 syn_ramstyle

SUG550-1.8E

Description

Specify the implementation of memory, which can be applied to both
specific instances and the global.

This attribute can be specified in GSC and RTL files.
Syntax
GSC Constraint Syntax

46(57)

5 Synthesis Constraints Support 5.15 syn_ramstyle

SUG550-1.8E

INS "object" syn_ramstyle =setting_value;

GLOBAL syn_ramstyle =setting_value;

Verilog Constraint Syntax

Verilog object /* synthesis syn_ramstyle = "setting_value" */;
VHDL Constraint Syntax

attribute syn_ramstyle:string;

attribute syn_ramstyle of object : objectType is " setting_value";
Note!

® object: It can be module/entity name, module entity instance name, or register.

® objectType: The type of object, such as signal.

® setting_value: The implementation of memory currently supports block _ram,
distributed_ram, registers, rw_check, no_rw_check.

® setting_value is registers: Maps inferred RAM to registers (flip-flop and logic circuit)
rather than dedicated RAM resources.

® setting_value is block_ram: Maps inferred RAM to dedicated memory, which uses
FPGA dedicated memory resources.

Examples
GSC Constraint Examples
Example 1 specifies BSRAM to implement instance.
INS "mem" syn _ramstyle=block_ram;
Example 2 specifies SSRAM to implement global memory.
GLOBAL syn_ramstyle=distributed _ram;
Verilog Constraint Examples

Example 1 specifies block_ram to implement memory in module and
there are no read or write check.

module test (...) /* synthesis syn_ramstyle = "block_ram" */

endmodule
Example 2 specifies BSRAM to implement instance.
module test (...);

reg [DATA W - 1:0] mem [(2**ADDR_W) - 1 : 0] /* synthesis
syn_ramstyle = "block_ram" */;

endmodule

VHDL Constraint Example

Example 1 specifies BSRAM to implement memory.
entity ram is

GENERIC(bits:INTEGER:=8;

47(57)

5 Synthesis Constraints Support 5.16 syn_romstyle

words:INTEGER:=256);

ARCHITECTURE arch of ram IS

TYPE vector_array IS ARRAY(0 TO words-1) OF
STD_LOGIC_VECTOR(bits-1 DOWNTO 0);

SIGNAL memory:vector_array ;

attribute syn_ramstyle:string;

attribute syn_ramstyle of memory : signal is " block_ram";
BEGIN

end arch;

5.16 syn_romstyle

Description

Specify the implementation of read-only memory, which can be applied
to both specific objects and the global.

This attribute can be specified in GSC and RTL files.
Syntax
GSC Constraint Syntax
INS "object" syn_romstyle =setting_value;
GLOBAL syn_romstyle =setting_value;
Verilog Constraints Syntax
Verilog object /* synthesis syn_romstyle = "setting_value" */;
VHDL Constraint Syntax
attribute syn_romstyle:string;
attribute syn_romstyle of object : objectType is " setting_value";

Note!

® object: It can be module/entity name, module entity instance name, or register.

® objectType: The type of object, such as signal.

® setting_value: The implementation of read-only memory, and it currently supports
block_rom, distributed_rom, logic.

Examples
GSC Constraint Examples
Example 1 specifies BSRAM to implement instance.
INS "mem"” syn_romstyle=block_rom;
Example 2 specifies SSRAM to implement global memory.

SUG550-1.8E 48(57)

5 Synthesis Constraints Support 5.17 syn_sristyle

GLOBAL syn_romstyle=distributed _rom;

Verilog Constraint Example

This example specifies SSRAM to implement memory in module.
module rom16_test(...)/*synthesis syn_romstyle="distributed_rom"*/;
endmodule

VHDL Constraint Example

This example specifies SSRAM to implement all memories in the
module.

ENTITY rom is

end rom;

ARCHITECTURE rom OF rom IS
signal data_out :STD_LOGIC_VECTOR(bits-1 DOWNTO 0);
attribute syn_romstyle:string;
attribute syn_romstyle of data_out : signal is "block_rom";

END rom;
5.17 syn_srlstyle

Description

Specify the implementation of shift registers, either acting on a specific
object or the global. The shift register can be implemented by BSRAM,
SSRAM, registers, and bsram_sdp. The number of registers in the shift
register determines which implementation method to use by default. The
default value can be changed by using syn_srlstyle.

This attribute can be specified in GSC and RTL files.
Syntax
GSC Constraint Syntax
NS "object" syn_sristyle =setting_value;
GLOBAL syn_srlistyle =setting_value;
Verilog Constraint Syntax
Verilog object /* synthesis syn_srlstyle = "setting_value" */;
VHDL Constraint Syntax
attribute syn_sristyle:string;
attribute syn_srlstyle of object : objectType is " setting_value";

Note!

SUG550-1.8E 49(57)

5 Synthesis Constraints Support 5.17 syn_sristyle

® object: It can be module/entity, module/entity instance or register. Module/entity is not
supported in the GSC syntax.

® objectType: The type of object, such as signal.

® setting_value: The memory implementation, and it supports block_ram,
distributed_ram, registers, and bsram_sdp currently. When specified as bsram_sdp,
shift registers are not inferred as SP.

Example
GSC Constraint Examples
Example 1 specifies that instance implementation is BSRAM.
INS "mem" syn_sristyle=block _ram;

Example 2 specifies that the global memory implementation is
SSRAM.

GLOBAL syn_sristyle=distributed_ram;

Verilog Constraint Example

Example 1 specifies that the register implementation in the module is
block_ram.

module test (...) /* synthesis syn_srlistyle = "block_ram" */;
endmodule

Example 2 specifies that instance implementation is BSRAM.
module test (...);

reg [SRL_WIDTH-1:0] regBank[SRL _DEPTH-1:0J/* synthesis
syn_sristyle = "block_ram" */;

endmodule

VHDL Constraint Example

This example specifies that the register implementation in the module
is register.

entity ram is
GENERIC(bits:INTEGER:=8;
words:INTEGER:=256);

attribute syn_sristyle:string;

attribute syn_sristyle of shiftreg : entity is "registers";

end ram;

ARCHITECTURE arch of ram IS

SUG550-1.8E 50(57)

5 Synthesis Constraints Support 5.18 syn_tlvds_io/syn_elvds_io

5.18 syn_tlvds_io/syn_elvds_io

SUG550-1.8E

Description

Specify the attribute of the differential 1/0 buffer mapping, which can
be applied to both specific objects and the global.

This attribute can be specified in GSC and RTL files.
Syntax

GSC Constraint Syntax

PORT "object" syn_tlvds_io =setting_value;

GLOBAL syn_tlvds_io =setting_value;

PORT "object" syn_elvds_io =setting_value;

GLOBAL syn_elvds_io =setting_value;

Verilog Constraint Syntax

Verilog object /* synthesis syn_tlvds_io = setting_value */;

VHDL Constraint Syntax

attribute syn_tlvds_io: integer;

attribute syn_tlvds_io of object: objectType is setting_value;

Note!

® object: It can be module/entity name or port name.
® objectType: The type of object, such as signal.
® setting_value: O or 1.

Examples
GSC Constraint Examples
Example 1 specifies that the buffer implementation is TLVDS.
PORT "io" syn_tlvds _io =1;
PORT "iob" syn_tlvds_io =1;

Example 2 specifies that the implementation of all buffers in the global
is TLVDS.

GLOBAL syn_tlvds_io =1;

Verilog Constraint Example

module elvds_iobuf(io,iob...);

inout io/*synthesis syn_elvds_io=1%/;
inout iob/*synthesis syn_elvds_io=1%/;

endmodule

51(57)

5 Synthesis Constraints Support 5.19 translate_off/Translate_on

VHDL Constraint Example
entity test is

port (in1_p : in std_logic;
in1_n:in std_logic;

clk : in std_logic;

out1 : out std_logic;

out2 : out std_logic);

attribute syn_tlvds_io: integer;
attribute syn_tlvds _io of in1_p,in1_n,out1,out2: signal is 1;
end test;

architecture arch of test is

end arch

5.19 translate_off/Translate_on

SUG550-1.8E

Description

translate_off /translate_on must occur in pairs, and statements after
translate off are skipped during the synthesis until translate_on occurs,
which is often used to automatically mask some statements during
synthesis.

This attribute can only be specified in RTL files.
Syntax
Verilog Constraint Syntax
/* synthesis translate off*/;
Statements ignored in the synthesis.
/* synthesis translate_on*/;
VHDL Constraint Syntax
-- synthesis translate_off
Statements ignored in the synthesis
-- synthesis translate_on
Examples
Verilog Constraint Example

The assign Nout =a*b between /*synthesis translate off*/ and
[*synthesis translate_on*/ is ignored in the synthesis in example 1.

module test (...);

/*synthesis translate_off*/

52(57)

5 Synthesis Constraints Support

5.19 translate off/Translate _on

SUG550-1.8E

assign my_ignore=a*b;

/* synthesis translate_on*/
endmodule

VHDL Constraint Example
entity top is

port (

);

end top;

architecture rtl of top is
begin

dout<=a + b;

-- synthesis translate_off
Nout <=a *b;

-- synthesis translate_on
end rtl;

53(57)

6 Report Document 6.1 Synthesis Message

Report Document

The report document is the statistical report generated after synthesis.
The file name is *_syn.rpt.html (* is the name of specified output netlist vg
file). It includes Synthesis Message, Synthesis Details, Resource, and
Timing, etc.

6.1 Synthesis Message

Synthesis Message refers to the basic information of Synthesis. As
shown in Figure 6-1. It mainly includes design file, GowinSynthesis version,
configuration information, and created time, etc.

Figure 6-1 Synthesis Message

Synthesis Messages

Report Title GowinSynthesis Report

Design File T /_publ nsr-2/SYNIrom16_caselsrc/rom_bp_async_rst_addr_5_dout_35.v

GowinSynthesis Constraints File

Tool Version V1.8.9.03

Part Number GWINSR-LV4CQN48GCE/I5
Device GWINSR-4C

Created Time Tue Apr 23 15:20:27 2024

Legal Announcement Copyright (C)2014-2024 Gowin Semiconductor Corporation. ALL rights reserved.

6.2 Synthesis Details

Synthesis Details includes the information of top level module,
synthesis process, total time and memory usage, as shown in Figure 6-2.

SUG550-1.8E 54(57)

6 Report Document

6.3 Resource

Figure 6-2 Synthesis Details

Top Level Module

Synthesis Process

Total Time and Memory Usage

6.3 Resource

SUG550-1.8E

Synthesis Details

top

Running parser:
CPU time = Oh Om 0.109s, Elapsed time = Oh Om 0.123s, Peak memory usage = 52.926MB
Running netlist conversion:
CPU time = Oh Om Os, Elapsed time = Oh Om 0s, Peak memary usage = 52.992MB
Running device independent optimization:
Optimizing Phase 0: CPU time = Oh Om Os, Elapsed time = Oh Om 0s, Peak memory usage = 53.133MB
Optimizing Phase 1: CPU time = Oh Om Os, Elapsed time = Oh Om 0s, Peak memory usage = 53.191MB
Optimizing Phase 2: CPU time = Oh Om Os, Elapsed time = Oh Om 0s, Peak memory usage = 53.254MB
Running inference:
Inferring Phase 0: CPU time = Oh Om 0s, Elapsed time = Oh Om Os, Peak memory usage = 53.344MB
Inferring Phase 1: CPU time = Oh Om Os, Elapsed time = Oh Om Os, Peak memory usage = 53.402MB
Inferring Phase 2: CPU time = Oh Om 0s, Elapsed time = Oh Om Os, Peak memory usage = 53.430MB
Inferring Phase 3: CPU time = Oh Om 0s, Elapsed time = Oh Om Os, Peak memory usage = 53.441MB
Running technical mapping:
Tech-Mapping Phase 0: CPU time = Oh Om Os, Elapsed time = Oh Om Os, Peak memory usage = 53.465MB
Tech-Mapping Phase 1: CPU time = Oh Om Os, Elapsed time = Oh Om Os, Peak memory usage = 53.465MB
Tech-Mapping Phase 2: CPU time = Oh Om Os, Elapsed time = Oh Om Os, Peak memory usage = 53.473MB
Tech-Mapping Phase 3: CPU time = Oh Om 0.039s, Elapsed time = Oh Om 0.028s, Peak memory usage = 54.280MB
Tech-Mapping Phase 4: CPU time = Oh Om Os, Elapsed time = Oh Om Os, Peak memory usage = 54.289MB
Generate output files:
CPU time = Oh Om Os, Elapsed time = Oh Om 0.008s, Peak memory usage = 57.043MB

CPU time = 0h Om 0.148s, Elapsed time = Oh Om 0.159s, Peak memory usage = 57.043MB

Resource shows the resource information. It mainly includes resource
and chip utilization statistics.

The resource usage summary table counts the number of I/O PORT,
I/0 BUF, REG, LUT, etc. The resource utilization summary table is used to
estimate the resource utilization of CFU Logics, Register, BSRAM, DSP in
the current device, as shown in Figure 6-3.

Figure 6-3 Resource

Resource Usage Summary

Resource
110 Port
110 Buf
IBUF
OBUF
Register
DFFE
LuT
LUT2
LUT3
LUT4
INV
INV

Resource

Usage
32
32
24

1032
1032
680
128
512
40

Resource Utilization Summary

Resource
Logic
Register
--Register as Latch
--Register as FF
BSRAM

Usage Utilization
681(681 LUT, 0 ALU) / 4608 15%

1032 / 4020 26%
0/4020 0%

1032 / 4020 26%

0710 0%

55(57)

6 Report Document 6.4 Timing

6.4 Timing

SUG550-1.8E

Timing shows the timing statistics. It includes Clock Summary, Max.
Frequency Summary, and Detail Timing Paths Information, etc.

Clock Summary mainly describes the clock signals of netlists, as
shown in Figure 6-4. It shows a default clock with 100MHz and a period of
10ns, a rising edge at Ons and a falling edge at 5ns.

Figure 6-4 Timing
Timing
Clock Summary:

Base 10.000 100.0 0.000 | 5.000 clk_ibuf/l

Max. Frequency Summary mainly counts the time frequency of netlist
file in order to measure whether the timing meets the requirements. As
shown in Figure 6-5, the requested frequency is 100MHz and the actual
frequency is 747.2MHz, and which meet the timing requirements. If the
requirements can not be met, the specific timing path needs to be further
checked.

Figure 6-5 Max Frequency Summary

Max Frequency Summary:

100.0(MHz) 747 2(MHz)

Detail Timing Paths Information shows the details of timing path. The
default is 5 paths, and the unit is nanoseconds. Path Summary describes
the key path, nodes and delays in the netlist file, as shown in Figure 6-6;
Data Arrival Path and Data Require Path are key paths, and you can see
from/to nodes and fanout in Figure 6-7. Path Statistics shows the path
delay information, as shown in Figure 6-8.

Figure 6-6 Path Summary

Detail Timing Paths Information

Path 1

Path Summary:

Slack 8.662
Data Arrival Time 2.283
Data Required Time 10.945
From reg2_s0
To out2
Launch Clk clk[R]
Latch Clk clk[R]

56(57)

6 Report Document 6.4 Timing
Figure 6-7 Connection Relation, Delay and Fanout Information
Data Arrival Path:
AT DELAY TYPE RF FANOUT NODE

0.000 0.000 clk
0.000 0.000 tCL RR 1 clk_ibuf/l
0.982 0.982 tINS RR 3 clk_ibuf/O
1.345 0.363 tNET RR 1 reg2_s0/CLK
1.803 0.458 tc2Q RF 3 reg2_s0/Q
2.283 0.480 tNET FF 1 out2/D

Data Required Path:

AT DELAY TYPE RF FANOUT NODE
10.000 0.000 clk
10.000 0.000 tCL RR 1 clk_ibuffl
10.982 0.982 tINS RR 3 clk_ibuf/O
11.345 0.363 tNET RR 1 out2/CLK
10.945 -0.400 tSu 1 out2
Figure 6-8 Path Statistics

Path Statistics:

Clock Skew: 0.000

Setup Relationship: 10.000

Logic Level: 1

SUG550-1.8E

Arrival Clock Path Delay:

cell: 0.982, 73.009%; route: 0.363, 26.991%

Arrival Data Path Delay:

cell: 0.000, 0.000%; route: 0.480, 51.155%; tC2Q: 0.458, 48.845%

Required Clock Path Delay:

cell: 0.982, 73.009%; route: 0.363, 26.991%

57(57)

XXX

	Disclaimer
	Revision History
	Contents
	List of Figures
	List of Tables
	1 About This Guide
	1.1 Purpose
	1.2 Related Documents
	1.3 Terminology and Abbreviation
	1.4 Support and Feedback

	2 Overview
	3 GowinSynthesis Usage
	3.1 Input and Output of GowinSynthesis
	3.2 Use GowinSynthesis for Synthesis
	3.3 Naming Rules of Objects Pre/Post Synthesis
	3.3.1 Naming of the Post-synthesis Netlist File
	3.3.2 Naming of the Post-synthesis Netlist Module
	3.3.3 Naming of the Post-synthesis Netlist Instance
	3.3.4 Naming of the Post-synthesis Netlist Wiring

	4 HDL Code Support
	4.1 Register HDL Code Support
	4.1.1 An Introduction to Register Features
	Flip-flop
	Latch

	4.1.2 Constraints Related with Register
	4.1.3 Register Code Example
	Not specify the Initial Value of Flip-flop
	Specify the Initial Value of Flip-flop

	4.2 RAM HDL Code Support
	4.2.1 An Introduction to RAM Inference Function
	4.2.2 An Introduction to RAM Features
	BSRAM
	SSRAM

	4.2.3 Constraints Related with RAM Inference
	4.2.4 RAM Inference Code Example

	4.3 DSP HDL Code Support
	4.3.1 Basic Introduction to DSP Inference
	4.3.2 Introduction to DSP Features
	4.3.3 Constraints Related with DSP
	4.3.4 DSP Inference Code Example

	4.4 Synthesis Implementation Rules for Finite State Machine
	4.4.1 Synthesis Rules for Finite State Machine
	4.4.2 Finite State Machine Code Example
	One-hot Code State Machine
	Gray Code State Machine
	Binary Code or other Codes State Machines

	5 Synthesis Constraints Support
	Constraints in RTL File
	GSC
	5.1 black_box_pad_pin
	Description
	Syntax
	Examples

	5.2 full_case
	Description
	Syntax
	Example

	5.3 parallel_case
	Description
	Syntax
	Example

	5.4 syn_black_box
	Description
	Syntax
	Examples

	5.5 syn_dspstyle
	Description
	Syntax
	Examples

	5.6 syn_encoding
	Description
	Syntax
	Examples

	5.7 syn_insert_pad
	Description
	Syntax
	Examples

	5.8 syn_keep
	Description
	Syntax
	Examples

	5.9 syn_looplimit
	Description
	Syntax
	Example

	5.10 syn_maxfan
	Description
	Syntax
	Examples

	5.11 syn_netlist_hierarchy
	Description
	Syntax
	Examples

	5.12 syn_noprune
	Description
	Syntax
	Example

	5.13 syn_preserve
	Description
	Syntax
	Examples

	5.14 syn_probe
	Description
	Syntax
	Examples

	5.15 syn_ramstyle
	Description
	Syntax
	Examples

	5.16 syn_romstyle
	Description
	Syntax
	Examples

	5.17 syn_srlstyle
	Description
	Syntax
	Example

	5.18 syn_tlvds_io/syn_elvds_io
	Description
	Syntax
	Examples

	5.19 translate_off/Translate_on
	Description
	Syntax
	Examples

	6 Report Document
	6.1 Synthesis Message
	6.2 Synthesis Details
	6.3 Resource
	6.4 Timing

