

GWU2U Driver (Windows VCP)

User Guide

UG1007-1.1E, 12/23/2021

Copyright © 2021 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

, Gowin, and GOWINSEMI are trademarks of Guangdong Gowin Semiconductor

Corporation and are registered in China, the U.S. Patent and Trademark Office, and other

countries. All other words and logos identified as trademarks or service marks are the

property of their respective holders. No part of this document may be reproduced or

transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording

or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied)

and is not responsible for any damage incurred to your hardware, software, data, or property

resulting from usage of the materials or intellectual property except as outlined in the

GOWINSEMI Terms and Conditions of Sale. All information in this document should be

treated as preliminary. GOWINSEMI may make changes to this document at any time

without prior notice. Anyone relying on this documentation should contact GOWINSEMI for

the current documentation and errata.

Revision History

 Date Version Description

06/29/2021 1.0E Initial version published.

12/23/2021 1.1E
Chapter 3 GWU2U Virtual Serial Port Programming

Guide updated.

 Contents

UG1007-1.1E i

Contents

Contents ... i

List of Figures ... ii

List of Table ... iii

1 GWU2U Virtual Serial Port Driver ... 1

2 Uninstall Driver .. 3

3 GWU2U Virtual Serial Port Programming Guide ... 5

3.1 Open Virtual Serial Port Device .. 5

3.2 Timeout Setting ... 8

3.3 Parameters Setting ... 9

3.4 }Clear Serial Port Buffer ... 10

3.5 Clear Serial Port Error ...11

3.6 Transmit Data via Virtual Serial Device (Synchronization) ... 12

3.7 Receive Data via Virtual Serial Device (Synchronization) .. 12

3.8 Asynchronous Read and Write Serial Port ... 13

Terminology and Abbreviations .. 24

Support and Feedback ... 25

 List of Figures

UG1007-1.1E ii

List of Figures

Figure 1-1 List All Devices ... 1

Figure 1-2 Select Device .. 2

Figure 1-3 Select Driver ... 2

Figure 2-1 Open Device Manager ... 3

Figure 2-2 Uninstall Device .. 4

 List of Table

UG1007-1.1E iii

List of Table

Table A-1 Terminology and Abbreviations .. 24

1 GWU2U Virtual Serial Port Driver

UG1007-1.1E 1(25)

1 GWU2U Virtual Serial Port Driver

GWU2U can use usbser.sys, USB virtual serial port driver for

programming operations to realize data receive/transmit and the setting of

parameters such as baud rate, parity bit, stop bit and byte bit width.

Use Gowin driver installation tool or Zadig (https://zadig.akeo.ie/), open

source driver installation tool, to install driver. The driver installation requires

administrator privileges.

Use Zadig to Install Driver

Connect GWU2U device to computer with USB interface, double-click

to open Zadig (administrator privileges required), click Options, check the

"List All Device" option, and all USB devices connected to the computer will

be listed.

Figure 1-1 List All Devices

1 GWU2U Virtual Serial Port Driver

UG1007-1.1E 2(25)

Select Gowin U2U, the device that requires driver installation.

Figure 1-2 Select Device

Select the driver to be installed, use virtual serial port driver (VCP), and

select USB Serial (CDC).

Figure 1-3 Select Driver

Click “Install Driver”. The driver will be installed after a few moments.

Note that the button displays "Install Driver" if the driver is not currently

installed, and "Replace Driver" if another driver is currently installed.

2 Uninstall Driver

UG1007-1.1E 3(25)

2 Uninstall Driver

To uninstall the driver, connect GWU2U device to the computer, open

the windows device manager, and find Gowin USB Serial device in the

"Universal Serial Bus Devices" list. Right-click on the device name and

select the "Uninstall Device" option in the pop-up menu.

Figure 2-1 Open Device Manager

2 Uninstall Driver

UG1007-1.1E 4(25)

In the pop-up dialog box, first check "Remove driver software for this

device", and then click the “Uninstall” button to uninstall the driver.

Figure 2-2 Uninstall Device

3 GWU2U Virtual Serial Port Programming Guide 3.1 Open Virtual Serial Port Device

UG1007-1.1E 5(25)

3 GWU2U Virtual Serial Port

Programming Guide

Use Windows library functions to operate the GWU2U virtual serial port

devices. The header file <windows.h> needs to be included when

programming.

3.1 Open Virtual Serial Port Device

Use the windows library function CreateFile () to open the virtual serial

device and return a handle to the serial port. The function interface is

defined as follows:

HANDLE WINAPI CreateFile(

 In LPCTSTR lpFileName,//Name of the file to open or

create

 In DWORD dwDesiredAccess,//Type of Access

 In DWORD dwShareMode,//Share mode

 _In_opt_ LPSECURITY_ATTRIBUTES lpSecurityAttributes,

//Security attributes

 In DWORD dwCreationDisposition,//Action to specify

that the file to be opened already exists or does not exist

 In DWORD dwFlagsAndAttributes,//File flags and

attributes

 _In_opt_ HANDLE hTemplateFile//A handle to template files

);

Function parameters are defined as follows:

lpFileName: Name of the file to open or create.

3 GWU2U Virtual Serial Port Programming Guide 3.1 Open Virtual Serial Port Device

UG1007-1.1E 6(25)

dwDesiredAccess: Type of access.

 0 is device query access method.

 GENERIC_READ is read access.

 GENERIC_WRITE is write access.

dwShareMode: Share mode.

 0 indicates the file cannot be shared and other operations to open the

file will fail.

 FILE_SHARE_READ indicates other read operations are allowed.

FILE_SHARE_WRITE indicates other write operations are allowed.

 FILE_SHARE_DELETE indicates other delete operations are allowed.

lpSecurityAttributes: Security attributes. A pointer to the

SECURITY_ATTRIBUTES struct.

dwCreationDisposition: Action to take when creating or opening the

file.

 OPEN_ALWAYS: Open the file, if it does not exist, then create it.

 TRUNCATE_EXISTING: Open the file and empty it (so

GENERIC_WRITE permission is required), if the file does not exist, then

it will fail.

 OPEN_EXISTING: Open the file, if the file does not exist, then it will fail.

 CREATE_ ALWAYS: Create the file, if it already exists, then empty it;

CREATE_NEW: Create the file, if it exists, then it will fail.

dwFlagsAndAttributes: File flag attributes.

 FILE_ATTRIBUTE_NORMAL: General attribute.

 FILE_FLAG_OVERLAPPED: Asynchronous I/O flag, if this flag is not

specified then the default is synchronous IO.

 FILE_ATTRIBUTE_READONLY: The file is read-only.

 FILE_ATTRIBUTE_HIDDEN: The file is hidden.

 FILE_FLAG_DELETE_ON_CLOSE: The files are deleted after all file

handles are closed.

 For other flags and attributes, please refer to the official Microsoft

documentation.

hTemplateFile: A handle to a file that must be opened with

GENERIC_READ access. If this parameter is not NULL, the file will be

created using the attributes and flags of the file associated with

3 GWU2U Virtual Serial Port Programming Guide 3.1 Open Virtual Serial Port Device

UG1007-1.1E 7(25)

hTemplateFile. If an existing file is opened, this parameter is ignored.

When using CreateFile() to open the serial port, it should be noted that:

 lpFileName file name, if the serial port is below COM10, then write the

serial port number name directly, such as "COM1"; if the serial port is

COM10 and above, then the format of serial port name should be: \\\\.

\COM10.

 dwShareMode shared mode should be 0, that is, the serial port should

be exclusive mode.

 dwCreationDisposition open action should be OPEN_EXISTING, that is,

the serial port must exist.

When closing the serial port, call CloseHandle() function to close the

serial port, and the parameter of the function is the serial port handle.

Examples are as follows:

 HANDLE hCom_1 =

CreateFile (

ComName,

GENERIC_READ | GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

FILE_FLAG_OVERLAPPED,

// indicates that open the serial port in OVERLAPPED mode for

asynchronous transmission, if synchronous transmission is used then

use parameter 0

NULL

); // Open serial port device

if (hCom_1 == INVALID_HANDLE_VALUE)

{

 int a = GetLastError();

 printf("Error: %d\n", a);

 return -1;

}

3 GWU2U Virtual Serial Port Programming Guide 3.2 Timeout Setting

UG1007-1.1E 8(25)

CloseHandle(hCom_1); // Close serial port device

3.2 Timeout Setting

When calling ReadFile() and WriteFile() to read and write to the serial

port, if no asynchronous operation is specified, both reading and writing will

always wait for the specified size of data, and then we may want to set a

timeout for reading and writing. Calling SetCommTimeouts() can set the

serial port read/write timeout, GetCommTimeouts() can get the current

timeout setting, generally use GetCommTimeouts to get the current timeout

information to a COMMTIMEOUTS struct first, then customize this struct,

then call SetCommTimeouts() to set it.

The member variables of COMMTIMEOUTS are described as follows:

ReadIntervalTimeout: The maximum delay between two characters.

When reading serial data, once the time difference between two character

transfers exceeds this time, the read function will return the existing data. A

setting of 0 means that the parameter does not work. Specifies the

maximum delay between the arrival of two characters on the communication

line (in milliseconds). During the ReadFile operation, the time period is

counted from the time the first character is received. If the interval between

two characters received exceeds this value, the ReadFile operation is

completed and all buffered data is returned. If ReadIntervalTimeout is 0,

then the value does not work. If the value is MAXDWORD, and the

ReadTotalTimeoutConstant and ReadTotalTimeoutMultiplier values are both

0, then the specified read operation returns immediately with the characters

already received, even if none were received.

ReadTotalTimeoutMultiplier: Read the timeout between each

character. Cumulative value that is specified in milliseconds. The total

number of timeouts used to calculate read operations. For each read

operation, the value is multiplied by the number of bytes to be read.

ReadTotalTimeoutConstant: The constant timeout for reading serial

data at a time. So in a read serial operation, the timeout is

ReadTotalTimeoutMultiplier multiplied by the number of bytes read plus

ReadTotalTimeoutConstant. Set ReadIntervalTimeout to MAXDWORD and

set ReadTotalTimeoutMultiplier and ReadTotalTimeoutConstant to 0 to

indicate that the read operation will immediately return the characters stored

in the input buffer.

WriteTotalTimeoutMultiplier: Write the timeout between each character.

WriteTotalTimeoutConstant: The constant timeout for writing serial data

3 GWU2U Virtual Serial Port Programming Guide 3.3 Parameters Setting

UG1007-1.1E 9(25)

at a time. So in a write serial operation, the timeout is

WriteTotalTimeoutMultiplier multiplied by the number of bytes read plus

WriteTotalTimeoutConstant.

Examples are as follows:

//Set read timeout

COMMTIMEOUTS timeouts;

GetCommTimeouts(hCom_1, &timeouts);

timeouts.ReadIntervalTimeout = 0;

timeouts.ReadTotalTimeoutMultiplier = 0;

timeouts.ReadTotalTimeoutConstant = 6000;

timeouts.WriteTotalTimeoutMultiplier = 0;

timeouts.WriteTotalTimeoutConstant = 0;

SetCommTimeouts(hCom_1, &timeouts);

//Set read/write buffer size

static const int nBufSize = 32768;

if(!SetupComm(hCom_1, nBufSize, nBufSize))

{

printf("SetupComm() failed, comm port closed…\n");

CloseHandle(hCom_1);

return -1;

}

3.3 Parameters Setting

Windows provides a dedicated data struct DCB and a dedicated

interface function GetCommState()/SetCommState() for setting serial port

parameters.

DCB is a data structure used for setting serial port communication

device. The variables for the basic settings of the serial port are as follows:

BaudRate: The maximum value that can be set is 256000.

Parity: NOPARITY, ODDPARITY, EVENPARITY, MARKPARITY,

SPACEPARITY.

ByteSize: The number of bits to transfer a single byte.

3 GWU2U Virtual Serial Port Programming Guide 3.4 }Clear Serial Port Buffer

UG1007-1.1E 10(25)

StopBits: ONESTOPBIT, ONE5STOPBITS, TWOSTOPSBITS.

Examples are as follows:

//Set comm port configurations

DCB dcb;

if (!GetCommState(hCom_1, &dcb))

{

printf("GetCommState() failed, comm port closed…\n)";

CloseHandle(hCom_1);

return -1;

}

//Configuration settings

int nBaud = 115200;

dcb.DCBlength = sizeof(DCB);

dcb.BaudRate = nBaud; //Baud rate

dcb.Parity = NOPARITY; //Parity mode

dcb.ByteSize = 8; //Byte Size

dcb.StopBits = TWOSTOPBITS; //Stop bit

if (!SetCommState(hCom_1, &dcb))

{

printf("SetCommState() failed\n");

CloseHandle(hCom_1);

return -1;

3.4 }Clear Serial Port Buffer

Windows provides the PurgeComm() function for stopping read and

write operations and clearing the read and write buffers. The read/write

buffer should be cleared first before reading serial data or writing serial data

for the first time, or if the serial port has not been used for a long time, or if

there is an error on the serial port. Examples are as follows:

DWORD dwError;

3 GWU2U Virtual Serial Port Programming Guide 3.5 Clear Serial Port Error

UG1007-1.1E 11(25)

COMSTAT cs;

if(!ClearCommError(hCom_1, &dwError, &cs))

{

printf("ClearCommError() failed\n");

CloseHandle(hCom_1);

return -1;

}

3.5 Clear Serial Port Error

Windows provides the ClearCommError() function to clear errors in

communication and to get the current status of communication. Call

ClearCommError() function to clear the error and get the size of the data in

the buffer before the read/write operation. Examples are as follows:

DWORD dwError;

COMSTAT cs;

if(!ClearCommError(hCom_1, &dwError, &cs))

{

printf("ClearCommError() failed\n");

CloseHandle(hCom_1);

return -1;

}

3 GWU2U Virtual Serial Port Programming Guide 3.6 Transmit Data via Virtual Serial Device (Synchronization)

UG1007-1.1E 12(25)

3.6 Transmit Data via Virtual Serial Device

(Synchronization)

Use WriteFile() function provided by Windows to send data. If it

succeeds, then return TRUE; if it fails, then return FALSE. When

transmitting data synchronously, the OVERLAPPED address data structure

in the function parameter should be set to NULL. Examples are as follows:

BOOL bErrorFlag = FALSE;

char DataBuffer[] = "This is some test data to write to the virtual

com port.\r\n";

DWORD dwBytesToWrite = (DWORD)strlen(DataBuffer);

DWORD dwBytesWritten = 0;

bErrorFlag =

WriteFile (

hCom_1, // Serial port handle

DataBuffer, // Save the address of the data to be sent

dwBytesToWrite, // The number of data bytes to be sent

&dwBytesWritten, // The variable address that saves the

actual number of bytes of data sent

NULL // OVERLAPPED data structure address, NULL

when sent synchronously

);

3.7 Receive Data via Virtual Serial Device

(Synchronization)

Use ReadFile() function provided by Windows to receive data. If it

succeeds, then return TRUE; if it fails, then return FALSE. When receiving

data synchronously, the OVERLAPPED address data structure in the

function parameter should be set to NULL. Examples are as follows:

char buf[101];

BOOL bErrorFlag = FALSE;

DWORD nLenOut = 0;

bErrorFlag =

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 13(25)

ReadFile (

hCom_1, // Serial port handle

buf, // Saving address of received data

100, // The count of the data bytes to be received

&nLenOut, // The variable address that saves the actual number

of bytes of data received

NULL // OVERLAPPED data structure address, NULL when

received synchronously

);

if(bErrorFlag)

{

if(nLenOut)

{ // succeed

}

else

{ // timeout

}

}

else

{ // fail

}

3.8 Asynchronous Read and Write Serial Port

Asynchronous read and write of serial port is similar to synchronous

read and write except that the serial ports need to be opened in an

overlapping mode. If the overlap operation does not complete immediately,

WaitCommEvent() returns FALSE and GetLastError() returns

ERROR_IO_PENDING, indicating that the operation is in progress in the

background. The hEvent member of the parameter overlap structure is set

to the no-signal state until WaitCommEvent returns. If an event or error

occurs, it is set to signaled state, the application can call the wait functions

(WaitForSingleObject, WaitForSingleObjectEx, etc.) to determine the state

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 14(25)

of the time object, and the WaitCommEvent() parameter lpEvtMask saves

the specific event that occurred.

There are two ways to wait or judge whether the overlapping operation

is completed.

 The first method is to use WaitForSingleObject() to wait for the hEvent

member of the parameter of OVERLAPPED type in the read/write

function: when the ReadFile, WriteFile functions are called, the member

will be automatically set to the no-signal state; when the overlapping

operation is completed, the member variable will be automatically set to

the signaled state when the overlap operation is completed.

 Another method is to call GetOverlappedResult() function to get the

status of the overlapping operation to determine whether the

overlapping operation is completed.

A complete example of virtual serial port asynchronous reading and

writing is as follows:

//Header files

#include <stdio.h>

#include <windows.h>

DWORD WINAPI ThreadRxMsg(LPVOID lpParameter);

void getComName(char* ComNamePtr, unsigned int ComNum);

void printBuf(char *buf, unsigned int bufSize);

char ComName[13];

HANDLE hCom_1;

int main(int argc, char* argv[])

{

DWORD dwError;

unsigned int ComNum = 26;

getComName(ComName, ComNum);

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 15(25)

 // open virtual serial port device in OVERLAPPED, the port name

is COM26

hCom_1 =

CreateFile (

ComName,

GENERIC_READ | GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

FILE_FLAG_OVERLAPPED,

0

);

if(hCom_1 == INVALID_HANDLE_VALUE)

{

int a = GetLastError();

printf("Error : %d\n", a);

 return -1;

 }

// Timeout Setting

COMMTIMEOUTS timeouts;

GetCommTimeouts(hCom_1,&timeouts);

timeouts.ReadIntervalTimeout = 0;

timeouts.ReadTotalTimeoutMultiplier = 0;

timeouts.ReadTotalTimeoutConstant = 6000;

timeouts.WriteTotalTimeoutMultiplier = 0;

timeouts.WriteTotalTimeoutConstant = 0;

SetCommTimeouts(hCom_1,&timeouts);

// Set the size of read/write buffer

static const int nBufSize = 32768;

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 16(25)

if(!SetupComm(hCom_1,nBufSize,nBufSize))

{

printf("SetupComm() failed, comm port closed...\n");

CloseHandle(hCom_1);

return -1;

}

// Set serial port parameters

DCB dcb;

if (!GetCommState(hCom_1,&dcb))

{

printf("GetCommState() failed, comm port closed...\n");

CloseHandle(hCom_1);

return -1;

 }

int nBaud = 115200;

dcb.DCBlength = sizeof(DCB);

dcb.BaudRate = nBaud; //Baud rate

dcb.Parity = NOPARITY; //Parity mode: No

dcb.ByteSize = 8; //Byte size: 8

dcb.StopBits = TWOSTOPBITS; //Stop bit： 1

if (!SetCommState(hCom_1,&dcb))

{

printf("SetCommState() failed\n)";

CloseHandle(hCom_1);

return -1;

}

// Create a new OVERLAPPED structure for the control of

asynchronous sending

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 17(25)

OVERLAPPED wrOverlapped;

memset(&wrOverlapped,0,sizeof(wrOverlapped));

if (wrOverlapped.hEvent != NULL)

{

ResetEvent(wrOverlapped.hEvent);

wrOverlapped.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL);

}

char DataBuffer[] = "This is some test data to write to the

virtual com port.\r\n";

DWORD dwBytesToWrite = (DWORD)strlen(DataBuffer);

DWORD dwBytesWritten = 0;

// Clear serial port errors and serial port transmit buffers

if (ClearCommError(hCom_1,&dwError,NULL)){

PurgeComm(hCom_1,PURGE_TXABORT | PURGE_TXCLEAR);

}

// Use WriteFile to transmit data and loop to determine if the

transmission is complete

if

(!WriteFile(hCom_1,DataBuffer,dwBytesToWrite,&dwBytesWritten,&w

rOverlapped))

{

if (GetLastError() == ERROR_IO_PENDING)

{

while

(!GetOverlappedResult(hCom_1,&wrOverlapped,&dwBytesWritten,FALS

E))

{

if (GetLastError() == ERROR_IO_INCOMPLETE)

{

//Not finished, continue and get the result again

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 18(25)

continue;

}

else

{

printf("Send Error Occured\n");

ClearCommError(hCom_1, &dwError,NULL);

break;

}

}

printf("Data send finished, Bytes Written: %d\n",

dwBytesWritten);

}

}

// Clear read buffer

PurgeComm(hCom_1,PURGE_RXCLEAR | PURGE_RXABORT);

//clear error

COMSTAT cs;

if(!ClearCommError(hCom_1,&dwError,&cs))

{

printf("ClearCommError() failed\n");

CloseHandle(hCom_1);

return -1;

}

SetCommMask(hCom_1, EV_RXCHAR); //Set event to receive data

//Create a new auxiliary thread to receive data

HANDLE hThread1 =

CreateThread(NULL,0,ThreadRxMsg,NULL,0,NULL);

while(1)

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 19(25)

{

// to do

}

CloseHandle(hCom_1);

return 0;

}

// Auxiliary thread for asynchronous receive serial port data

DWORD WINAPI ThreadRxMsg(LPVOID lpParameter)

{

while(1)

 {

 // OVERLAPPED structure for controlling asynchronous receive

 OVERLAPPED osWait;

memset(&osWait,0,sizeof(OVERLAPPED));

osWait.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL);

DWORD dwEvtMask;

if (WaitCommEvent(hCom_1,&dwEvtMask,&osWait))

{

 //If receive buffer is not empty, handle the data in the buffer

if(dwEvtMask & EV_RXCHAR)

{

DWORD dwError;

COMSTAT cs;

if(!ClearCommError(hCom_1,&dwError,&cs))

{

printf("ClearCommError() failed\n)";

CloseHandle(hCom_1);

return -1;

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 20(25)

}

char buf[101] = {0};

DWORD nLenOut = 0;

DWORD dwTrans = 0;

OVERLAPPED osRead;

memset(&osRead,0,sizeof(OVERLAPPED));

osRead.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL);

BOOL bReadStatus =

ReadFile(hCom_1,buf,cs.cbInQue,&nLenOut,&osRead);

if(!bReadStatus)

{

if(GetLastError() == ERROR_IO_PENDING)

{

printf("GetLastError() == ERROR_IO_PENDING\n");

// to do

}

}

else

{

printBuf(buf,nLenOut);

}

}

}

else

{

if(GetLastError() == ERROR_IO_PENDING)

{

WaitForSingleObject(osWait.hEvent,INFINITE);

if(dwEvtMask & EV_RXCHAR)

{

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 21(25)

DWORD dwError;

COMSTAT cs;

if(!ClearCommError(hCom_1,&dwError,&cs))

{

printf("ClearCommError() failed\n");

CloseHandle(hCom_1);

return -1;

}

char buf[101] = {0};

DWORD nLenOut = 0;

DWORD dwTrans = 0;

OVERLAPPED osRead;

memset(&osRead,0,sizeof(OVERLAPPED));

osRead.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL);

BOOL bReadStatus =

ReadFile(hCom_1,buf,cs.cbInQue,&nLenOut,&osRead);

if(!bReadStatus)

{

if(GetLastError() == ERROR_IO_PENDING)

{

printf("GetLastError() == ERROR_IO_PENDING\n");

// to do

}

}

else

{

printBuf(buf,nLenOut);

}

}

}

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 22(25)

}

}

return 1;

}

// Generate the serial port name according to the serial port

number, when the number is greater than or equal to 10, the serial

port name should be in the format of "\\\\. \\COMXX".

void getComName(char* ComNamePtr, unsigned int ComNum)

{

if(ComNum > 9)

{

sprintf(ComNamePtr, "\\\\.\\COM%d", ComNum);

}

else

{

sprintf(ComNamePtr,"COM%d",ComNum);

 }

return;

}

// Print Serial port data received

void printBuf(char *buf, unsigned int bufSize)

{

for(int i = 0; i < bufSize; i++)

{

#ifdef PRINT_HEX

printf("%02x ", buf[i]);

#else

3 GWU2U Virtual Serial Port Programming Guide 3.8 Asynchronous Read and Write Serial Port

UG1007-1.1E 23(25)

printf("%c", buf[i]);

#endif

}

return;

}

For details of the function interface to the Windows virtual serial port,

see the official Microsoft documentation at Serial Communications

Functions.

https://docs.microsoft.com/en-us/previous-versions/aa910699(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/aa910699(v=msdn.10)

 Terminology and Abbreviations

UG1007-1.1E 24(25)

Terminology and Abbreviations

The abbreviations and terminology used in this manual are as shown in

Table A-1.

Table A-1 Terminology and Abbreviations

Terminology and Abbreviations Meaning

USB Universal Serial Bus

UART Universal Asynchronous Receiver/Transmitter

 Support and Feedback

UG1007-1.1E 25(25)

Support and Feedback

Gowin Semiconductor provides customers with comprehensive

technical support. If you have any questions, comments, or suggestions,

please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com

E-mail: support@gowinsemi.com

http://www.gowinsemi.com/en/
mailto:support@gowinsemi.com

	Disclaimer
	Revision History
	Contents
	List of Figures
	List of Table
	1 GWU2U Virtual Serial Port Driver
	Use Zadig to Install Driver

	2 Uninstall Driver
	3 GWU2U Virtual Serial Port Programming Guide
	3.1 Open Virtual Serial Port Device
	3.2 Timeout Setting
	3.3 Parameters Setting
	3.4 }Clear Serial Port Buffer
	3.5 Clear Serial Port Error
	3.6 Transmit Data via Virtual Serial Device (Synchronization)
	3.7 Receive Data via Virtual Serial Device (Synchronization)
	3.8 Asynchronous Read and Write Serial Port

	Terminology and Abbreviations
	Support and Feedback

