

GWU2X Programming Guide_U2X_JTAG

UG1003-1.0E, 06/29/2021

Copyright © 2021 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

, Gowin, and GOWINSEMI are trademarks of Guangdong Gowin Semiconductor

Corporation and are registered in China, the U.S. Patent and Trademark Office, and other

countries. All other words and logos identified as trademarks or service marks are the

property of their respective holders. No part of this document may be reproduced or

transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording

or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied)

and is not responsible for any damage incurred to your hardware, software, data, or property

resulting from usage of the materials or intellectual property except as outlined in the

GOWINSEMI Terms and Conditions of Sale. All information in this document should be

treated as preliminary. GOWINSEMI may make changes to this document at any time

without prior notice. Anyone relying on this documentation should contact GOWINSEMI for

the current documentation and errata.

Revision History

 Date Version Description

06/29/2021 1.0E Initial version published.

 Contents

UG1003-1.0E i

Contents

Contents ... i

List of Tables... ii

1 General Description .. 1

2 Programming ... 5

2.1 API Functions .. 5

2.1.1 Get JTAG Status .. 5

2.1.2 Get Running Error Information .. 5

2.1.3 Generate TMS Signal Array ... 6

2.1.4 Set TCK Frequency ... 6

2.1.5 Set IO Ports ... 7

2.1.6 JTAG Status Reset .. 7

2.1.7 JTAG Status Jumping to IDLE ... 8

2.1.8 Send IR Data ... 9

2.1.9 Send DR Data.. 10

2.1.10 Readback TDO Data ..11

2.1.11 Generate Commands to Send DR Data ...11

2.2 Programming Example ... 12

Terminology and Abbreviations .. 16

Support and Feedback ... 17

 List of Tables

UG1003-1.0E ii

List of Tables

Table A-1 Terminology and Abbreviations .. 16

1 General Description

UG1003-1.0E 1(17)

1 General Description

GWU2X can be used to create a USB to JTAG protocol interface to

read/write JTAG interfaces. Its TCK clock frequency can be configured. It

supports up to 15MHz TCK according to the current test result. It can send

or read IR/DR data of any BIT length.

2 Driver Installation and Uninstallation 2.1 Use Zadig to Install Driver

UG1003-1.0E 2(17)

2Driver Installation and Uninstallation

GWU2X _JTAG can be programmed using libusb, the open source

USB function library. To program with this function library, the “WinUSB.sys”

USB driver program needs to be installed.

You can use Zadig(https://zadig.akeo.ie/), the open source driver

installation tool, to install driver. The driver installation requires administrator

privileges.

2.1 Use Zadig to Install Driver

Connect GWU2X device to the computer USB interface, double-click to

open Zadig (administrator privileges required), click Options, and check the

"List All Device" option. All USB devices connected to the computer will be

listed.

Figure 2-1 Check “List All Device” Option

Select GWU2X, the device that requires driver installation.

2 Driver Installation and Uninstallation 2.1 Use Zadig to Install Driver

UG1003-1.0E 3(17)

Figure 2-2 Select the Device that Requires Driver Installation

Select the driver to be installed, use libusb+WinUSB, and select

WinUSB.

Figure 2-3 Select the Driver Program to be Installed

Click “Install Driver”. The driver will be installed after a few moments.

Note!

The button displays "Install Driver" if the driver is not currently installed, and "Replace

Driver" if another driver is currently installed.

2 Driver Installation and Uninstallation 2.2 Uninstall Driver

UG1003-1.0E 4(17)

2.2 Uninstall Driver

To uninstall the driver, connect GWU2X device to the computer, open

the windows device manager, and find GWU2X device in the "Universal

Serial Bus Devices" list. Right-click on the device name and select the

"Uninstall Device" option in the pop-up menu.

Figure 2-4 Open Device Manager

In the pop-up dialog box, first check "Remove driver software for this

device", and then click the “Uninstall” button to uninstall the driver.

Figure 2-5 Uninstall Device

3 Programming 3.1 API Functions

UG1003-1.0E 5(17)

3 Programming

3.1 API Functions

3.1.1 Get JTAG Status

const char * jtag_get_state_str(int iJtagStateCode);

Parameters:

iJtagStateCode: A variable of the JTAG state. For the variable definition,

please refer to the enumerated value of JTAG_STATE defined in

gw_usb2jtag.h.

Return Value:

A const char pointer to the address of a string that describes JTAG

status. It can be used to output information for debugging.

3.1.2 Get Running Error Information

const char * usb2jtag_get_err_info(int errCode);

Parameters:

errCode: Returns the error code of API functions. Returns 0 if

successful; returns a negative value if an error occurs in the function

running.

Return Value:

A const char pointer to the address of a string that describes error

Information. It can be used to output information for debugging.

3 Programming 3.1 API Functions

UG1003-1.0E 6(17)

3.1.3 Generate TMS Signal Array

int jtag_generate_tms_array(

int *pJtagState,

int iTargetState,

int *pTmsBitCnt,

unsigned int *pTmsBitArray);

Parameters:

pJtagState: A pointer to a variable that holds the current JTAG state. If

running successful, the variable will be updated to the JTAG state after the

TMS signal is sent.

iTargetState: Send a TMS signal to cause the JTAG device to jump to

the target JTAG state.

pTmsBitCnt: A pointer to a variable that holds the length of the

generated TMS signal array.

pTmsBitArray: A pointer to a variable that holds the value of the

generated TMS signal array.

Return Value:

Returns 0 if the parameter setting is successful, otherwise an error

code less than zero is returned

3.1.4 Set TCK Frequency

int usb2jtag_tckset(

libusb_device_handle *devh,

unsigned int uiFreqKiloHz,

unsigned int uiTimeOut);

Parameters:

Devh: USB device handle in libusb, used to operate the USB2JTAG

device.

uiFreqKiloHz: TCK frequency to be set, in KHz;

uiTimeout: Timeout parameter, in ms. It's infinite waiting if set to “0”.

Return Value:

Returns 0 if the parameter setting is successful, otherwise an error

3 Programming 3.1 API Functions

UG1003-1.0E 7(17)

code less than zero is returned

3.1.5 Set IO Ports

int usb2jtag_ioset(

libusb_device_handle *devh,

unsigned short usIODir,

unsigned short usIOLevelSet,

unsigned int uiTimeOut);

Parameters:

Devh: USB device handle in libusb, used to operate the USB2JTAG

device.

uiIODir: Set the direction of IO ports. JTAG TCK/TMS/TDI needs to be

set to output mode and TDO needs to be set to input mode. For the

parameter definition, please refer to the macro definition in gw_usb2jtag.h.

uiIOLevelSet: Set the level of the IO port during its idle time. During idle

time, TMS/TDI is usually set to high and TCK/TDO to low. For the parameter

definition, please refer to the macro definition in gw_usb2jtag.h.

uiTimeout: Timeout parameter, in ms. It's infinite waiting if set to “0”.

Return Value:

Returns 0 if the parameter setting is successful, otherwise an error

code less than zero is returned

Example:

usIODir = JTAG_GPIO_TCK_OUT | JTAG_GPIO_TMS_OUT |

JTAG_GPIO_TDI_OUT;

usIOLevelSet = JTAG_GPIO_TMS_HIGH |

JTAG_GPIO_TDI_HIGH;

usb2jtag_ioset(devh, usIODir, usIOLevelSet, TIMEOUT);

3.1.6 JTAG Status Reset

When this function is executed, JTAG sends a series of TMS high level

signals, causing the JTAG device state to jump to TEST LOGIC RESET.

int usb2jtag_reset(

libusb_device_handle *devh,

int *pJtagCurrentState,

3 Programming 3.1 API Functions

UG1003-1.0E 8(17)

unsigned int uiTimeOut);

Parameters:

Devh: USB device handle in libusb, used to operate the USB2JTAG

device.

pJtagCurrentState: A pointer to a variable that holds the current JTAG

status. After the function is executed, the variable will change to

TEST_LOGIC_RESET (0x0).

uiTimeout: Timeout parameter, in ms. It's infinite waiting if set to “0”.

Return Value:

Returns 0 if the function runs successful, otherwise an error code less

than zero is returned

3.1.7 JTAG Status Jumping to IDLE

When this function is executed, JTAG sends TMS signals, causing the

JTAG device state to jump to RUN TEST IDLE.

int usb2jtag_goto_idle(

libusb_device_handle *devh,

int *pJtagCurrentState,

unsigned short usIdleTckLen,

unsigned int uiTimeOut);

Parameters:

Devh: USB device handle in libusb, used to operate the USB2JTAG

device.

pJtagCurrentState: A pointer to a variable that holds the current JTAG

status. After the function is executed, the variable will change to RUN TEST

IDLE (0x0).

usIdleTckLen: After jumping to Run Test Idle, it continues to generate a

TCK with the specified length. If it is not required, this parameter is passed

to 0.

uiTimeout: Timeout parameter, in ms. It's infinite waiting if set to “0”.

Return Value:

Returns 0 if the function runs successful, otherwise an error code less

than zero is returned

3 Programming 3.1 API Functions

UG1003-1.0E 9(17)

3.1.8 Send IR Data

This function sends TMS signals first to cause JTAG status to jump to

SHIFT IR, and then sends the specified IR data. After that, sends TMS

signals to cause JTAG status to jump to RUN TEST IDLE, and continues to

send TCK signals with specified cycles if necessary.

int usb2jtag_shift_ir(

libusb_device_handle *devh,

int *pJtagCurrentState,

int iTdiBitCnt,

unsigned char *ucTdiData,

unsigned char *ucTdoReadBack,

unsigned short usIdleTckLen,

unsigned int uiTimeOut);

Parameters:

Devh: USB device handle in libusb, used to operate the USB2JTAG

device.

pJtagCurrentState: A pointer to a variable that holds the current JTAG

status. After the function is executed, the variable will change to RUN TEST

IDLE (0x0).

iTdiBitCnt: The BIT length of IR data sent by TDI.

TransData: A pointer to the IR data to be sent by TDI.

ucTdoReadBack: A pointer to the address that holds the TDO readback

data. If the TDO readback data is not required to be stored, this parameter is

passed to NULL.

usIdleTckLen: After jumping to RUN TEST IDLE, it continues to

generate a TCK with the specified length. If it is not required, this parameter

is passed to 0.

uiTimeout: Timeout parameter, in ms. It's infinite waiting if set to “0”.

Return Value:

Returns 0 if the function runs successful, otherwise an error code less

than zero is returned

3 Programming 3.1 API Functions

UG1003-1.0E 10(17)

3.1.9 Send DR Data

This function sends TMS signals first to cause JTAG status to jump to

SHIFT DR, and then sends the specified DR data. After that, sends TMS

signals to cause JTAG status to jump to RUN TEST IDLE, and continues to

send TCK signals with specified cycles if necessary.

int usb2jtag_shift_dr(

libusb_device_handle *devh,

int *pJtagCurrentState,

int iTdiBitCnt,

unsigned char *ucTdiData,

unsigned char *ucTdoReadBack,

unsigned short usIdleTckLen,

unsigned int uiTimeOut);

Parameters:

Devh: USB device handle in libusb, used to operate the USB2JTAG

device.

pJtagCurrentState: A pointer to a variable that holds the current JTAG

status. After the function is executed, the variable will change to RUN TEST

IDLE (0x0).

iTdiBitCnt: The BIT length of DR data sent by TDI.

ucTdiData: A Pointer to the DR data to be sent by TDI.

ucTdoReadBack: A pointer to the address that holds the TDO readback

data. If the TDO readback data is not required to be stored, this parameter is

passed to NULL.

usIdleTckLen: After jumping to RUN TEST IDLE, it continues to

generate a TCK with the specified length. If it is not required, this parameter

is passed to 0.

uiTimeout: Timeout parameter, in ms. It's infinite waiting if set to “0”.

Return Value:

Returns 0 if the function runs successful, otherwise an error code less

than zero is returned.

3 Programming 3.1 API Functions

UG1003-1.0E 11(17)

3.1.10 Readback TDO Data

This function reads back the TDO data currently stored.

int usb2jtag_readback_tdo(

libusb_device_handle *devh,

int iBitsToRead,

unsigned char *ucTdoReadBack,

unsigned int uiTimeOut);

Parameters:

Devh: USB device handle in libusb, used to operate the USB2JTAG

device.

iBitsToRead: The BIT length of TDO that needs to be read back.

ucTdoReadBack: A pointer to the address that holds the TDO readback

data.

uiTimeout: Timeout parameter, in ms. It's infinite waiting if set to “0”.

Return Value:

Returns 0 if the function runs successful, otherwise an error code less

than zero is returned.

3.1.11 Generate Commands to Send DR Data

This function generates the commands of sending DR data according to

the incoming parameters, but the DR data will not be sent until a set of

several instructions to send DR data are generated and stored in a

continuous address and then the “libusb_bulk_transfer” function in libusb is

used to sent all at once, which can improve the transmission efficiency.

int usb2jtag_build_shift_dr_cmd(

int *pJtagCurrentState,

int iTdiBitCnt,

unsigned char *ucTdiData,

unsigned short usIdleTckLen,

unsigned char ucIsTdoRdbk,

unsigned char *ucCmdMem,

int *piCmdMemByteLeft,

3 Programming 3.2 Programming Example

UG1003-1.0E 12(17)

int *piCmdByteCnt);

Parameters:

pJtagCurrentState: A pointer to a variable that holds the current JTAG

status. After the function is executed, the variable will change to

RUN_TEST_IDLE.

iTdiBitCnt: The BIT length of the DR data sent by TDI.

ucTdiData: A Pointer to the address that holds the DR data to be sent

by TDI.

usIdleTckLen: How many TCK cycles needs to be sent after sending

and jumping to IDLE. If no TCK cycle is required, this parameter is passed

as 0.

ucIsTdoRdbk: Whether the TDO readback data needs to be saved. If so,

this parameter is passed as 1; otherwise, this parameter is passed as 0.

ucTdoReadBack: A pointer to the address that holds the generation

commands.

piCmdMemByteLeft: A pointer to a variable that indicates how much

byte space is left in the address that holds the generated commands.Upon

successful execution of this function, the value of the variable is

automatically updated.

piCmdByteCnt: A pointer to a variable that holds the BYTE length of the

comands generated by this execution of the function.

Return Value:

Returns 0 if the function runs successful, otherwise an error code less

than zero is returned.

3.2 Programming Example

#define TIMEOUT 1000

usIODir = JTAG_GPIO_TCK_OUT | JTAG_GPIO_TMS_OUT |

JTAG_GPIO_TDI_OUT;

usIOLevelSet = JTAG_GPIO_TMS_HIGH |

JTAG_GPIO_TDI_HIGH;

usb2jtag_ioset(devh, usIODir, usIOLevelSet, TIMEOUT);

usb2jtag_tckset(devh, 1330, TIMEOUT);

usb2jtag_reset(devh, &iJtagCurrentState, TIMEOUT);

3 Programming 3.2 Programming Example

UG1003-1.0E 13(17)

usb2jtag_goto_idle(devh, &iJtagCurrentState, 0,

TIMEOUT);

rc = usb2jtag_shift_ir(devh, &iJtagCurrentState, 5,

&ir_data, &ir_rdbk, 10, TIMEOUT);

if(rc != 0) {

 printf("usb2jtag shift ir test failed...\n");

 goto out;

}

printf("ir tdo read back: 0x%02x\n", ir_rdbk);

rc = usb2jtag_shift_dr(devh, &iJtagCurrentState, 58,

(unsigned char *)(&dr_data), (unsigned char *)(&dr_rdbk),

20, TIMEOUT);

if(rc != 0) {

 printf("usb2jtag shift dr test failed...\n");

 goto out;

}

printf("dr tdo read back: %016llx\n", dr_rdbk);

4 Error Code 3.2 Programming Example

UG1003-1.0E 14(17)

4 Error Code

If the API function runs well, it returns 0; otherwise, it returns a negative

number.

The meaning of the non-zero return values are shown in the table as

below.

Table 4-1 Error Code List

Value Enumerator

0 SUCCESS Runs correctly

-1 USB_ERROR_IO USB input/output error

-2 USB_ERROR_INVALID_PARAM USB parameter error

-3 USB_ERROR_ACCESS No permission to access the device

-4 USB_ERROR_NO_DEVICE No USB device (device

disconnected)

-5 USB_ERROR_NOT_FOUND No Entity

-6 USB_ERROR_BUSY USB device busy

-7 USB_ERROR_TIMEOUT Timeout

-8 USB_ERROR_OVERFLOW Memory overflow

-9 USB_ERROR_PIPE Pipe error

-10 USB_ERROR_INTERRUPTED The system function was interrupted

-11 USB_ERROR_NO_MEM Out of memory

-12 USB_ERROR_NOT_SUPPORTED Not supported on the current

platform

-13 U2J_ERROR_USBTRANS_ERR USB data transmitting error

-14 U2J_ERROR_INVALID_PARAM Invalid U2X_JTAG parameter setting

4 Error Code 3.2 Programming Example

UG1003-1.0E 15(17)

Value Enumerator

-15 U2J_ERROR_TIMEOUT U2X_JTAG transmitting timeout

-16 U2J_ERROR_CMD_ERR U2X_JTAG command error

-99 ERROR_OTHER Other errors

 Terminology and Abbreviations

UG1003-1.0E 16(17)

Terminology and Abbreviations

The abbreviations and terminology used in this manual are as shown in

Table A -1 below.

Table A-1 Terminology and Abbreviations

Terminology and Abbreviations Meaning

USB Universal Serial Bus

JTAG Joint Test Action Group

 Support and Feedback

UG1003-1.0E 17(17)

Support and Feedback

Gowin Semiconductor provides customers with comprehensive

technical support. If you have any questions, comments, or suggestions,

please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com

E-mail:support@gowinsemi.com

http://www.gowinsemi.com/en/
mailto:support@gowinsemi.com

	Disclaimer
	Revision History
	Contents
	List of Tables
	1 General Description
	2 Driver Installation and Uninstallation
	2.1 Use Zadig to Install Driver
	2.2 Uninstall Driver

	3 Programming
	3.1 API Functions
	3.1.1 Get JTAG Status
	3.1.2 Get Running Error Information
	3.1.3 Generate TMS Signal Array
	3.1.4 Set TCK Frequency
	3.1.5 Set IO Ports
	3.1.6 JTAG Status Reset
	3.1.7 JTAG Status Jumping to IDLE
	3.1.8 Send IR Data
	3.1.9 Send DR Data
	3.1.10 Readback TDO Data
	3.1.11 Generate Commands to Send DR Data

	3.2 Programming Example

	4 Error Code
	Terminology and Abbreviations
	Support and Feedback

