VR

GOWIN

PROGRAMMING FOR THE FUTURE

GWU2X Programming Guide U2X_SPI

UG1004-1.0E, 6/29/2021

Copyright © 2021 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN, Gowin, and GOWINSEMI are trademarks of Guangdong Gowin Semiconductor
Corporation and are registered in China, the U.S. Patent and Trademark Office, and other
countries. All other words and logos identified as trademarks or service marks are the
property of their respective holders. No part of this document may be reproduced or
transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording
or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied)
and is not responsible for any damage incurred to your hardware, software, data, or property
resulting from usage of the materials or intellectual property except as outlined in the
GOWINSEMI Terms and Conditions of Sale. All information in this document should be
treated as preliminary. GOWINSEMI may make changes to this document at any time
without prior notice. Anyone relying on this documentation should contact GOWINSEMI for
the current documentation and errata.

Revision History

Date

Version

Description

6/29/2021

1.0E

Initial version published.

Contents

Contents
L0010 1= 0 1 N i
I ESY A0 o 1 1= SRR i
LISt Of TADIES..oeee e e e e e eens i
1 General DEeSCIIPLION ..cooeviiiiii e e e e e e 1
2 Driver Installation and Uninstallationcoooiiiiiiiiin e, 2
2.1 Use Zadig 1O INSLAIl DIIVETuueeiieieieieiiieeeeeeiieseseasesssssseesssssssssesesessesressssrarerarererererarnrernrene 2
2.2 UNINSTAIN DIV oottt ettt e e e e et e e e e e e e s bbb e et e e e e e e annrneneeas 4
3 libusb_WINUSB Programming.........ccccceieeeeeiieieiiiiieeeeeeeeeeeesvnins e e e e e eeeennnnns 5
3.1 Libusb Initialization @nd EXItcceiieeiiiiiiiiiiiee e e e e s e e e e s annraeeees 5
3.2 0Open the SPecCified USB DEVICE.........uuuuuieieieiiiiieiiiieiiieieeeassesseresesersrereeeeerererere————————.. 6
3.3 INterface DECIArAtIONcoiiiiiiiiiiiiiiiie et e e e e e s e e e e e e s e annbneneeas 8
4 Parameter Configurationiiiiiiii i 9
5 U2X _SPIAPI FUNCLIONS ..uuiiicc e 11
5.1 Parameter CONfigUIAtiONuuuuuueiuieiiieieieieieieieieiereaereererererereerererererararerere e 11
5.2 Send / RECEIVE BYLE DALAeeieiiiiiiieiiiiie ettt 11
5.3 Send / Receive Multiple BitS Of Datal..........uuuiviiiiiiiiiiiiiiiieiiiiieiieeiveeeeeeeseeseeseeesesesesesesnnnnane. 13
5.4 Programming EXAMPIEuuuiiiiiiiiiiiieieieieieieeeseeeseeeeeeesesssssesssessssssssssssssssssssasssessrerssssnnnrnnes 14
L =g 0] GO0 Yo L= ST 17
Terminology and ABDreviations ..o 19
Support and FeedbacK ... 20

UG1004-1.0E i

List of Figures

List of Figures

Figure 2-1 Check “List All DEVICE” OPLIONuviiieiiiiciiiiieie et e e e e e s nrreee s 2
Figure 2-2 Select the Device that Requires Driver Installationccccvveiiiiiieiniiiieiice e, 3
Figure 2-3 Select the Driver Program to be Installedcocueiiiiiiiiiiii e 3
Figure 2-4 Open DeVICe MANAJETccceei i, 4
FIgUre 2-5 UNINSTAI DEVICEueiiiiiiiiie ittt ettt e e e e s snnnee s 4

UG1004-1.0E ii

List of Tables

List of Tables

L= o L A g o TR O o o [T I 17

Table A-1 Terminology and ADDIreVIationS ... 19

UG1004-1.0E iii

1 General Description

UG1004-1.0E

1 General Description

GWU2X is a USB to multiple protocol converter that enables SCLK
function conversion and supports up to 12MHz SCLK clock frequency
(current test result).

It supports standard SPI host mode; It supports full duplex data
transceiver function, optional command fields, address fields, DummySCLK
fields, and data fields.

1(20)

2 Driver Installation and Uninstallation 2.1 Use Zadig to Install Driver

2Driver Installation and Uninstallation

GWU2X_SPI can be programmed using libusb, the open source USB
function library. To program with this function library, the “WinUSB.sys” USB
driver program needs to be installed.

You can use Zadig(https://zadig.akeo.ie/), the open source driver
installation tool, to install driver. The driver installation requires administrator
privileges.

2.1 Use Zadig to Install Driver

UG1004-1.0E

Connect GWU2X device to the computer USB interface, double-click to
open Zadig (administrator privileges required), click Options, and check the
"List All Device" option. All USB devices connected to the computer will be
listed.

Figure 2-1 Check “List All Device” Option

El Zadig — *
Device Options Help
+ List All Devices

USB2.! « Ignore Hubs or Composite Parents v |[JEdit
Create a Catalog File
i . More Information
Driver Sign Catalog & Install Autogenerated Certificate - n
WinUSB (ibusb
USBIC Advanced Mode libusb-win32
Log Verbosity » libuisb

A 1 - "
WCID — WinUSE (Microsoft]

8 devices found.

Select GWU2X, the device that requires driver installation.

2(20)

2 Driver Installation and Uninstallation

2.1 Use Zadig to Install Driver

Figure 2-2 Select the Device that Requires Driver Installation

El Zadig - *
Device Options Help
USE Receiver (Interface 2) ~ | [Edit

USE Receiver {Interface 2)
USEB Receiver {Interface 1)
USE Receiver {Interface 0)

USB ik iz &

Dual R5232-HS (Interface O
Dual R5232-HS (Interface 1)

ption

!

WCIo © E‘

7 devices found.

1

WinUSB (Microsoft

Select the driver to be installed, use libusb+WinUSB, and select

WinUSB.

Figure 2-3 Select the Driver Program to be Installed

El Zadig
Device Options Help

Gowin U2Z¥

Driver |(NONE)

| |:|‘> |WinUSB (v6.1.7500. 16385) | <

o s
wein2 E

7 devices found.

Install Driver hd

~ |[JEdit

More Information
WinUSE (ibusb)
libush-win32

libusbK

WinUSB (Microsoft

Click “Install Driver”. The driver will be installed after a few moments.

Note!

The button displays "Install Driver" if the driver is not currently installed, and "Replace

Driver" if another driver is currently installed.

UG1004-1.0E

3(20)

2 Driver Installation and

Uninstallation

2.2 Uninstall Driver

To uninstall the driver, connect GWU2X device to the computer, open
the windows device manager, and find GWU2X device in the "Universal
Serial Bus Devices" list. Right-click on the device name and select the
"Uninstall Device" option in the pop-up menu.

Figure 2-4 Open Device Manager

File

@ Device Manager

Action View Help

e @ E BRI P EXG

v & LAPTOP-VHVQMOAL

iy Audic inputs and outputs

P Batteries

£ Bluetooth

[Computer

s Disk drives

I Display adapters

== DVD/CD-ROM drives

W Firmware

J# Human Interface Devices

== |DE ATA/ATAPI controllers

33 Imaging devices

= Keyboards

5 Lenovo Vhid Device

G Mice and other pointing devices
[Monitors

I3 Network adapters

= Print queues

[Processors

B Security devices

B Software devices

i Sound, video and game controllers
G Storage controllers

= System devices

§ Universal Serial Bus controllers

~ @ Universal Serial Bus devices

§ Gwux

In the pop-up dialog box, first check "Remove driver software for this
device", and then click the “Uninstall” button to uninstall the driver.

Figure 2-5 Uninstall Device

@

File Action View Help

mE HEm P EXE®

vl

v

LAPTOP-VHVOMOAL

iy Audio inputs and outputs
i@ Batteries

0 Bluetooth

I Computer

s Disk drives

I Display adapters

== DVD/CD-ROM drives

W Firmware

P Human Interface Devices
“m IDE ATA/ATAPI controllers
3% Imaging devices

= Keyboards

& Lenovo Vhid Device

(@ Mice and other pointing devices
@ Monitors

(@ Network adapters

0 Print queues

O Processors

Uninstall Device

<P Gwu

Wanming: You are about to uninstall this device from your system.

Delete the driver software for this device.

Cancel

[B7 Security devices

§ Software devices

i| Sound, video and game controllers
Ga Storage controllers

[Em System devices

§ Universal Serial Bus controllers
§ Universal Serial Bus devices
Gwuzx

UG1004-1.0E

2.2 Uninstall Driver

3 libusb_WinUSB Programming 3.1 Libusb Initialization and Exit

3libusb_WinUSB Programming

libusb is an open source USB function library.
The official website is: https://libusb.info
The source code is hosted on github at: https://github.com/libusb/libusb

You can download the pre-compiled version, the official GCC version
and VS version, including dynamic and static libraries, through the official
website. You can also download the source code through github and
compile it on your own.

For libusb function descriptions, see the official reference at:
http://libusb.sourceforge.net/api-1.0

3.1 Libusb Initialization and Exit

When programming with libusb, you need to call the function libusb_init()
to initialize it first, and at the end of use, you should call the function
libusb_exit() to exit it from the system.

Function declarations are as follows:
int libusb init (libusb context ** context)

void libusb exit (libusb context * ctx)

The parameter libusb_context is a libusb context struct that saves some
configuration parameters for libusb. If libusb_context is not specified, a
default context struct will be created, or if one already exists, it will be used
directly and not reinitialized.

Programming examples are as follows:
int rc = libusb init (NULL);
if (rc < 0)

return rc;

UG1004-1.0E 5(20)

https://libusb.info/
https://github.com/libusb/libusb
http://libusb.sourceforge.net/api-1.0

3 libusb_WinUSB Programming 3.2 Open the Specified USB Device

libusb exit (NULL) ;

3.2 Open the Specified USB Device

You can use the libusb_open_device_with_vid_pid() function to open
the specified device based on VID/PID. You can also use the
libusb_get_device_list() function to get all the USB devices, select the
desired device from them, and use the libusub_open() function to get the
handle of the device for subsequent operations. The function declaration is
as follows:

Open the device with VID/PID:

libusb device handle* libusb open device with vid pid(
libusb context * ctx,
uintl6 t vendor id,
uintl6 t product id

)

The parameter ctx is the address of the context struct generated when
initializing libusb. If the default context is used, use NULL. vendor_id and
product_id are the VID and PID of the USB device, respectively. The VID of
Gowin USB device is 0x33aa, and the PID of the U2X_SPI device is
0x0020.

The return value is the pointer to the operation handle of the first
matching device found by libusb on this computer, otherwise it returns the
null pointer NULL.

Examples of use are as follows:
devh = libusb open device with vid pid(NULL, Ox33aa, 0x0020);
if (NULL == devh) {

printf ("Open USB device failed\n");

goto out;
}
Select the specified device after getting all USB devices.
ssize t libusb get device list (

libusb context * ctx,

libusb device *** list

UG1004-1.0E 6(20)

3 libusb_WinUSB Programming 3.2 Open the Specified USB Device

The parameter ctx is the address of the context struct generated when
initializing libusb. If the default context is used, use NULL. “list” is the pointer

to storage device list.

At the end of use, the memory should be freed using the
libusb_free device_list() function.

If the function is executed correctly, the return value is the number of
devices and the list saves the list of found devices. Otherwise, a libusb_error
value less than zero is returned.

int libusb open (
libusb device *dev,
libusb device handle **dev handle
)

The parameter dev is the device in the device list, and dev_handle is
the address that saves the pointer of the returned device handle.

If the device is opened successfully, the return value is zero, otherwise
an libusb_error value less than zero is returned.

Examples of use are as follows:

cnt = libusb get device list (NULL, &devs);
if(cnt < 0) {
// get device list failed
return -1;
}
for(int 1 = 0; i < cnt; i++) {
libusb open(dev([i], dev handle);
if (/*the wanted device is opened*/) {
break;

} else {

//the current device is not wanted, close it and check the next one.

libusb close(dev _handle);

UG1004-1.0E 7(20)

3 libusb_WinUSB Programming 3.3 Interface Declaration

3.3 Interface Declaration

USB devices usually contain one or more interfaces. libusb needs to
declare the interface first when using the interface, and when the declaration
is successful, it means that the interface is successfully opened and the
endpoint contained in the interface can be received/transmitted.

int libusb claim interface(
libusb device handle * dev handle,
int interface number

)

The parameter dev_handle is the device handle; interface_number is
the number of interface. In GWU2X device, the interface number is 0. If the
interface is declared successfully, the return value is zero, otherwise an
libusb_error value less than zero is returned.

Programming Examples:

rc = libusb claim interface(devh, 0);
if (rc < 0) {
printf ("Error claiming interface: %s\n", libusb error name (rc));

goto out;

UG1004-1.0E 8(20)

4 Parameter Configuration

UG1004-1.0E

4 Parameter Configuration

The struct of u2x_spi_config is used to configure and control the

transmission of U2X_SPI parameters.

typedef struct u2x spi config ({

unsigned int uiSclkFregKiloHz;

data shift direction DataShftDir;

sclkipolarity ClkPol;
sclk phase ClkPha;
sel polarity SelPol;
unsigned char ucAddrLen;
unsigned char ucCmdEn;

} u2x _spi config;

uiSclkFregKiloHz: Used to configure SCLK clock Frequency, in Khz;

DataShftDir: Used to control the data shift mode. Set it to MSB_FIRST if
high is first; set it to LSB_FIRST if low is first.

ClkPol: Used to set the level of the SCLK clock during idle time. If it is
low, set it to CPOL_O; if it is high, set it to CPOL_1.

ClkPha: Set which edge of SCLK to send data and sample the received
data. If send and sample on the first edge, set it to CPHA_0; if send and
sample on the second edge, set it to CPHA_1.

SelPol: Used to set the effective level of the chip select signal. Set it to
SEL_POL_LO if the low level is valid; set it to SEL_POL_HI if the high
level is valid.

ucAddrLen: Used to control the length of the address segment to be sent.
If it is not necessary to send the address segment, set this parameter to

9(20)

4 Parameter Configuration

UG1004-1.0E

0. The maximum value of this parameter is 4, indicating that the length
of the address segment is 4 bytes.

® ucCmdEn: Used to control whether to send a command segment. If set
to 1, send a byte of the command segment; if set to 0, no command
segment will be sent and the length of the command segment is fixed at
1 byte.

Please refer to the following enumeration variable definitions for values
set above:

typedef enum data shift direction ({
MSB FIRST,
LSB FIRST

} data shift direction;

typedef enum sclk polarity {
CPOL 0,
CPOL 1

} sclk polarity;

typedef enum sclk phase {
CPHA O,
CPHA 1

} sclk phase;

typedef enum sel polarity {
SEL_POL LO,
SEL_POL HI

} sel polarity;

10(20)

5 U2X_SPI API Functions 5.1 Parameter Configuration

5 U2X SPI API Functions

5.1 Parameter Configuration

This funtion is uesd to configure U2X_SPI parameters. If you need to
change the parameter configuration, use this function again to reconfigure it.

int u2x spi set config(
libusb device handle *devh,
u2x spi config *pSpiConfig,

unsigned int uiTimeout

Parameters:
® devh: device handle of libusb;

e pSpiConfig: A pointor to the “u2x_spi_config” struct, use this struct to
configure parameters for U2X_SPI device.

® uiTimeout: timeout parameter, in milliseconds;
Return Value:

Returns O if the function runs successful, otherwise an error code less
than zero is returned.

5.2 Send / Receive Byte Data

This function can realize three data transmission modes of full duplex
sending and receiving, sending only, and receiving only. It takes bytes as
unit, and the maximum data length of a single transmission is 512 bytes.

int u2x spi read write bytes(
libusb device handle *devh,

UG1004-1.0E 11(20)

5 U2X_SPI API Functions 5.2 Send / Receive Byte Data

UG1004-1.0E

unsigned int uiDataByteCnt,
unsigned char *pucWriteData,
unsigned char *pucReadData,
unsigned int uiAddr,
unsigned char ucCmd,
unsigned int uiDummyCnt,

uZ2x spi config *pSpiConfig,

unsigned int uiTimeout

Parameters:

devh: device handle of libusb;

uiDataByteCnt: The count of bytes to control the data transmitting and
receiving.

pucWriteData: A pointer to that holds the data to be transmitted. If no
data needs to be sent, set this parameter to NULL.

pucReadData: A pointer to that holds the received data. If no data
needs to be received, set this parameter to NULL.

uiAddr: Address segment data. If the length of the address segment
configuration is non-zero, the address data will be sent. The maximum
length of the address segment is 4 bytes.

ucCmd: Command segment data. If it's enabled, the byte data will be
sent in the command segment.

uiDummyCnt: DummySCLK, that is, the number of waiting clock cycles
between the command segment, address segment, and data segment.
If this parameter is non-zero, send the SCLK with the specified number
of cycles after sending the command segment and address segment,
and then send the data segment. The maximum value of this parameter
is 65536. If DummySCLK segment is not needed, set this parameter to
0.

pSpiConfig: A pointor to the “u2x_spi_config” struct, use this struct to
control the reading and writing of U2X_SPI device.

uiTimeout: timeout parameter, in milliseconds;
Return Value:

Returns O if the function runs successful, otherwise an error code less

12(20)

5 U2X_SPI API Functions

5.3 Send / Receive Multiple Bits of
Data

than zero is returned.

5.3 Send / Receive Multiple Bits of Data

UG1004-1.0E

This function can realize three data transmission modes of full duplex

sending and receiving, sending only, and receiving only. It takes bits as unit.
The maximum data length of a single transmission is 2048 bits (512 bytes).

int u2x spi read write bits(

libusb device handle *devh,
unsigned int uiDataBitCnt,
unsigned char *pucWriteData,
unsigned char *pucReadData,
unsigned int uiAddr,
unsigned char ucCmd,
unsigned int uiDummyCnt,
u2x_spi config *pSpiConfig,

unsigned int uiTimeout

Parameters:
devh: device handle of libusb:;

uiDataBitCnt: The count of bits to control the data transmitting and
receiving.

pucWriteData: A pointer to that holds the data to be transmitted. If no
data needs to be sent, set this parameter to NULL.

pucReadData: A pointer to that holds the received data. If no data
needs to be received, set this parameter to NULL.

uiAddr: Address segment data. If the length of the address segment
configuration is non-zero, the address data will be sent. The maximum
length of the address segment is 4 bytes.

ucCmd: Command segment data. If it's enabled, the byte data will be
sent in the command segment.

uiDummyCnt: DummySCLK, that is, the number of waiting clock cycles
between the command segment, address segment, and data segment.
If this parameter is non-zero, send the SCLK with the specified number

13(20)

5 U2X_SPI API Functions

5.4 Programming Example

of cycles after sending the command segment and address segment,
and then send the data segment. The maximum value of this parameter
is 65536. If DummySCLK segment is not needed, set this parameter to

0.

® pSpiConfig: A pointor to the “u2x_spi_config” struct, use this struct to
control the reading and writing of U2X_SPI device.

® uiTimeout: timeout parameter, in milliseconds;

Return Value:

Returns O if the function runs successful, otherwise an error code less

than zero is returned.

5.4 Programming Example

UG1004-1.0E

//Global variables

static struct libusb device handle *devh = NULL;

static u2x spi config SpiConfig;
u2x spi config *pSpiConfig = &SpiConfig;
// Main Function
int main(int argc, char *argv([])
{
unsigned char ucWrDatal[64];

unsigned char ucRdDatal[64];

unsigned long long ullWrData = 0x1234567812345678;

unsigned long long ullRdData = 0x0;

int rc = 0;
rc = libusb init (NULL) ;
if (rc < 0)

return rc;

// Open the GWU2X device

devh = libusb open device with vid pid(NULL,
if (NULL == devh) {
printf ("Open USB device failed\n");

goto out;

0x33aa, 0x0120);

14(20)

5 U2X_SPI API Functions 5.4 Programming Example

rc = libusb claim interface(devh, 0);
if (rc < 0) {

goto out;

for(i = 0; 1 < DATA BYTE; i++) {

ucWrDatal[i] = 1i;

// Configure U2X SPI parameters

pSpiConfig->DataShftDir = MSB FIRST;
pSpiConfig->ClkPol = CPOL_0;
pSpiConfig->ClkPha = CPHA 0;

pSpiConfig->SelPol SEL POL LO;
pSpiConfig->uiSclkFregKiloHz = 10000; // SCLK frequency is 10MHz
pSpiConfig->ucAddrLen = 3; // The length of adress segment is 3 bytes

pSpiConfig->ucCmdEn = 1; // Enable command segment

u2x_spi set config(devh, pSpiConfig, 1000);

//Full-duplex mode sends and receives 64 bytes of data simultaneously
u2x_spi read write bytes (devh,

64, // The length of transmission data is 64 bytes.

ucWrData, // Data to be sent

ucRdData, // Store the received data

Oxaabbcc, // The address segment is Oxaabbcc

0x32, // The Command segment is 0x32

8, // Send eight cycles of Dummy SCLK after command segment and adress

segment
pSpiConfig, // Pointer to the struct of parameter configuration

1000);// Set “timeout” parameter to 1000 milliseconds

//Full-duplex mode sends and receives 56 bits data simultaneously

UG1004-1.0E 15(20)

5 U2X_SPI API Functions 5.4 Programming Example

UG1004-1.0E

uZ2x spi read write bits(devh,
56, // The length of transmission data Bit 56 bits.
(unsigned char *) (&ullWrData), // Data to be sent
(unsigned char *) (&ullRdData), // Store the received data
Oxaabbcc, // The address segment is Oxaabbcc
0x32, // The Command segment is 0x32

8, // Send eight cycles of Dummy SCLK after command segment and adress

segment
pSpiConfig, // Pointer to the struct of parameter configuration

1000);// Set “timeout” parameter to 1000 milliseconds

// Close the device and Exit
out:
if (devh)

libusb close (devh);
libusb exit (NULL) ;

return 0;

16(20)

6 Error Code

UG1004-1.0E

Error Code

If the API function runs well, it returns 0; otherwise, it returns a negative

number.

The meaning of the non-zero return values are shown in the table as

below.

Table 6-1 Error Code List

Value | Enumerator

0 SUCCESS

Runs correctly

-1 USB_ERROR_IO

USB input/output error

-2 USB_ERROR_INVALID_PARAM

USB parameter error

-3 USB_ERROR_ACCESS

No permission to access the device

-4 USB_ERROR_NO_DEVICE

No USB device (device
disconnected)

-5 USB_ERROR_NOT_FOUND

No Entity

-6 USB_ERROR_BUSY

USB device busy

-7 USB_ERROR_TIMEOUT

Timeout

-8 USB_ERROR_OVERFLOW

Memory overflow

-9 USB_ERROR_PIPE

Pipe error

-10 USB_ERROR_INTERRUPTED

The system function was interrupted

-11 | USB_ERROR_NO_MEM

Out of memory

-12 USB_ERROR_NOT_SUPPORTED

Not supported on the current
platform

-13 | U2X_SPI_ERROR_USBTRANS_ERR

USB data transmitting error

-14 | U2X_SPI_ERROR_INVALID_PARAM

Invalid parameter setting

-15 U2X_SPI_ERROR_TIMEOUT

U2X_SPI transmitting timeout

17(20)

6 Error Code

UG1004-1.0E

Value | Enumerator
-16 U2X_SPI_ ERROR_CMD_ERR U2X_SPI command error
-99 ERROR_OTHER Other errors

18(20)

Terminology and Abbreviations

Terminology and Abbreviations

The abbreviations and terminology used in this manual are as shown in
Table A -1.

Table A -1 Terminology and Abbreviations

Terminology and Abbreviations Full Name
USB Universal Serial Bus
SPI Serial Peripheral Interface

UG1004-1.0E 19(20)

Support and Feedback

Support and Feedback

Gowin Semiconductor provides customers with comprehensive
technical support. If you have any questions, comments, or suggestions,
please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com

E-mail:support@gowinsemi.com

UG1004-1.0E 20(20)

http://www.gowinsemi.com/
mailto:support@gowinsemi.com

XXX

—n

	Disclaimer
	Revision History
	Contents
	List of Figures
	List of Tables
	1 General Description
	2 Driver Installation and Uninstallation
	2.1 Use Zadig to Install Driver
	2.2 Uninstall Driver

	3 libusb_WinUSB Programming
	3.1 Libusb Initialization and Exit
	3.2 Open the Specified USB Device
	3.3 Interface Declaration

	4 Parameter Configuration
	5 U2X_SPI API Functions
	5.1 Parameter Configuration
	5.2 Send / Receive Byte Data
	5.3 Send / Receive Multiple Bits of Data
	5.4 Programming Example

	6 Error Code
	Terminology and Abbreviations
	Support and Feedback

